20.若函數(shù)f(x)的定義域?yàn)镈內(nèi)的某個(gè)區(qū)間I上是增函數(shù),且F(x)=$\frac{f(x)}{x}$在I上也是增函數(shù),則稱y=f(x)是I上的“完美函數(shù)”,已知g(x)=ex+x-lnx+1,若函數(shù)g(x)是區(qū)間[$\frac{m}{2}$,+∞)上的“完美函數(shù)”,則正整數(shù)m的最小值為(  )
A.1B.2C.3D.4

分析 運(yùn)用導(dǎo)數(shù)判斷g(x)=ex+x-lnx+1,與G(x)=$\frac{g(x)}{x}$在[$\frac{3}{2}$,+∞)上都是單調(diào)遞增函數(shù),再由新定義即可求整數(shù)m的最小值.

解答 解:∵g(x)=ex+x-lnx+1,x>0,
∴g′(x)=ex+1-$\frac{1}{x}$在(0,+∞)單調(diào)遞增,g′($\frac{1}{2}$)=$\sqrt{e}$-1>0,
∴可以得出:g(x)在[$\frac{1}{2}$,+∞)上是單調(diào)遞增.
∵G(x)=$\frac{{e}^{x}+x-lnx+1}{x}$,
∴G′(x)=$\frac{{e}^{x}(x-1)+lnx-2}{{x}^{2}}$,x>0,
設(shè)m(x)=xex-ex-2+lnx,
m′(x)=xex+$\frac{1}{x}$>0,m(x)在(0,+∞)上單調(diào)遞增,
m($\frac{1}{2}$)=-$\frac{1}{2}$$\sqrt{e}$-2-ln2<0,m(1)=e-e-2+0=-2<0,
m($\frac{3}{2}$)=$\frac{1}{2}$${e}^{\frac{3}{2}}$-2+ln($\frac{3}{2}$)>0,
∴在[$\frac{3}{2}$,+∞)上,有G′(x)>0成立,
∴函數(shù)G(x)=$\frac{g(x)}{x}$在[$\frac{3}{2}$,+∞)上是單調(diào)遞增函數(shù),
綜合判斷:g(x)=ex+x-lnx+1,與G(x)=$\frac{g(x)}{x}$在[$\frac{3}{2}$,+∞)上都是單調(diào)遞增函數(shù),
g(x)=ex+x-lnx+1,與G(x)=$\frac{g(x)}{x}$在[1,+∞)上不是都為單調(diào)遞增函數(shù),
∵函數(shù)g(x)是區(qū)間[$\frac{m}{2}$,+∞)上的“完美函數(shù)”,
∴m≥3,
即整數(shù)m最小值為3.
故選C.

點(diǎn)評(píng) 本題以新定義的形式考查函數(shù)的單調(diào)性,考查運(yùn)用所學(xué)知識(shí)分析解決新問(wèn)題的能力,多次構(gòu)造函數(shù),求解導(dǎo)數(shù),判斷單調(diào)遞增,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.圓x2+y2-4x+2=0與直線l相切于點(diǎn)A(3,1),則直線l的方程為x+y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=2sin(ωx+φ)$(ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則f(x)的單調(diào)增區(qū)間是[kπ-$\frac{π}{12}$,$\frac{5π}{12}+kπ$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解下列關(guān)于x的不等式:
(1)$(\frac{1}{3})^{{x}^{2}-2x}>1$;
(2)log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在等差數(shù)列{an}中,若a4+a9+a14=36,則2a10-a11=( 。
A.6B.12C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$f(x)=\frac{1}{{\sqrt{4-{2^x}}}}$定義域?yàn)椋ā 。?table class="qanwser">A.(2,+∞)B.[2,+∞)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=2ax-1+3,(a>0且a≠1),則其圖象一定過(guò)定點(diǎn)(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1且t=-1時(shí),解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2-2t+1在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.化簡(jiǎn)$\frac{sin(2A+B)}{sinA}$-2cos(A+B)的結(jié)果為( 。
A.sin(A+B)B.cos(2A+B)C.$\frac{sinB}{sinA}$D.tanA

查看答案和解析>>

同步練習(xí)冊(cè)答案