【題目】函數(shù)的所有零點的積為m,則有( 。

A. B. C. D.

【答案】B

【解析】

作函數(shù)y=e-xy=|log2x|的圖象,設(shè)兩個交點的坐標(biāo)為(x1,y1),(x2,y2)(不妨設(shè)x1<x2),得到0<x1<1<x2<2,運用對數(shù)的運算性質(zhì)可得m的范圍

f(x)=0,即e-x=|log2x|,
作函數(shù)y=e-xy=|log2x|的圖象


設(shè)兩個交點的坐標(biāo)為(x1,y1),(x2,y2
(不妨設(shè)x1<x2),
結(jié)合圖象可知,0<x1<1<x2<2,
即有e-x1=-log2x1,①
e-x2=log2x2,②
-x1>-x2,
②-①可得log2x2+log2x1<0,
即有0<x1x2<1,
m∈(0,1).
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱臺的三視圖與直觀圖如圖所示.

(1)求證:平面平面

(2)在線段上是否存在一點,使與平面所成的角的正弦值為?若存在,指出點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個人去參加娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱底面,的中點

求證:;

求證:平面

設(shè),在線段上是否存在點,使得?若存在確定點的位置; 若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中a>﹣1.若f(x)在R上是增函數(shù),則實數(shù)a的取值范圍是(
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{}的前n項和 (n為正整數(shù))。

1,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項公式;

(2),試比較的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位正方體中,點P在線段上運動,給出以下四個命題:

異面直線間的距離為定值;

三棱錐的體積為定值;

異面直線與直線所成的角為定值;

二面角的大小為定值.

其中真命題有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列命題中所有正確結(jié)論的序號是______

①其圖象關(guān)于軸對稱; ②當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);

的最小值是; ④在區(qū)間上是增函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案