【題目】如圖,在平面直角坐標(biāo)系中,橢圓的右準(zhǔn)線(xiàn)為直線(xiàn),左頂點(diǎn)為,右焦點(diǎn)為. 已知斜率為2的直線(xiàn)經(jīng)過(guò)點(diǎn),與橢圓相交于兩點(diǎn),且到直線(xiàn)的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若過(guò)的直線(xiàn)與直線(xiàn)分別相交于兩點(diǎn),且,求的值.

【答案】121

【解析】

1)根據(jù)準(zhǔn)線(xiàn)方程和原點(diǎn)到直線(xiàn)的距離可求出,從而可得橢圓的標(biāo)準(zhǔn)方程.

2)設(shè),,聯(lián)立直線(xiàn)和直線(xiàn)的方程可得的坐標(biāo),同理可得的坐標(biāo),根據(jù)可得的坐標(biāo)關(guān)系,聯(lián)立直線(xiàn)和橢圓的方程,利用韋達(dá)定理化簡(jiǎn)前述關(guān)系可求斜率的值.

解:(1)設(shè)橢圓的焦距為,

則直線(xiàn)的方程為,即.

因?yàn)?/span>到直線(xiàn)的距離為,故,

所以,則.

因?yàn)闄E圓的右準(zhǔn)線(xiàn)的為直線(xiàn),則,所以,,

故橢圓的標(biāo)準(zhǔn)方程為.

2)由(1),設(shè),.

,則 .

,可知,

,

同理.

因?yàn)?/span>,所以,

由圖可知

所以,

,

所以

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為正方形,為正三角形,的中點(diǎn),過(guò)的平面平行于平面,且平面與平面的交線(xiàn)為,與平面的交線(xiàn)為

1)在圖中作出四邊形(不必說(shuō)出作法和理由);

2)若,四棱錐的體積為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)求的單調(diào)區(qū)間;

)若都屬于區(qū)間,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極值.

1)求,并求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場(chǎng)的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計(jì)分析,得到甲在和乙的第一場(chǎng)比賽中,取勝的概率為0.5,受心理方面的影響,前一場(chǎng)比賽結(jié)果會(huì)對(duì)甲的下一場(chǎng)比賽產(chǎn)生影響,如果甲在某一場(chǎng)比賽中取勝,則下一場(chǎng)取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )

A.0.162B.0.18C.0.168D.0.174

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閏月年指農(nóng)歷里有閏月的年份,比如2020年是閏月年,423日至522日為農(nóng)歷四月,523日至620日為農(nóng)歷閏四月.農(nóng)歷置閏月是為了農(nóng)歷年的平均長(zhǎng)度接近回歸年:農(nóng)歷年中的朔望月的平均長(zhǎng)度為29.5306日,日,回歸年的總長(zhǎng)度為365.2422日,兩者相差10.875日.因此,每19年相差206.625日,約等于7個(gè)朔望月.這樣每19年就有7個(gè)閏月年.以下是1640年至1694年間所有的閏月年:

1640

1642

1645

1648

1651

1653

1656

1659

1661

1664

1667

1670

1672

1675

1678

1680

1 683

1686

1689

1691

1694

則從2020年至2049年,這30年間閏月年的個(gè)數(shù)為( )

A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,是正三角形,且平面平面ABC,E,G分別為ABBC的中點(diǎn).

(Ⅰ)證明:平面ABD;

(Ⅱ)若F是線(xiàn)段DE的中點(diǎn),求AC與平面FGC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前,我國(guó)老年人口比例不斷上升,造成日趨嚴(yán)峻的人口老齡化問(wèn)題.20191012日,北京市老齡辦、市老齡協(xié)會(huì)聯(lián)合北京師范大學(xué)中國(guó)公益研究院發(fā)布《北京市老齡事業(yè)發(fā)展報(bào)告(2018)》,相關(guān)數(shù)據(jù)有如下圖表.規(guī)定年齡在15歲至59歲為勞動(dòng)年齡,具備勞動(dòng)力,60歲及以上年齡為老年人,據(jù)統(tǒng)計(jì),2018年底北京市每2.4名勞動(dòng)力撫養(yǎng)1名老年人.

(Ⅰ)請(qǐng)根據(jù)上述圖表計(jì)算北京市2018年戶(hù)籍總?cè)丝跀?shù)和北京市2018年的勞動(dòng)力數(shù);(保留兩位小數(shù))

(Ⅱ)從2014年起,北京市老齡人口與年份呈線(xiàn)性關(guān)系,比照2018年戶(hù)籍老年人人口年齡構(gòu)成,預(yù)計(jì)到2020年年底,北京市90以上老人達(dá)到多少人?(精確到1人)

(附:對(duì)于一組數(shù)據(jù)其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

1)若,求函數(shù)的圖像在點(diǎn)處的切線(xiàn)方程;

2上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案