【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于,兩點(diǎn),求,兩點(diǎn)間的距離的值.
【答案】(1)見解析;(2)8.
【解析】
(1)參數(shù)方程化為普通方程可得直線的普通方程為;極坐標(biāo)方程化為直角坐標(biāo)方程可得曲線的直角坐標(biāo)方程為;
(2)由題意可得直線的參數(shù)方程為.聯(lián)立直線的參數(shù)方程與拋物線的直角坐標(biāo)方程,結(jié)合參數(shù)的幾何意義可得.
(1)由參數(shù)方程可得,消去參數(shù)可得直線的普通方程為:,即;
即,
轉(zhuǎn)化為直角坐標(biāo)方程可得曲線的直角坐標(biāo)方程為;
(2)∵的極坐標(biāo)為,∴點(diǎn)的直角坐標(biāo)為.
∴,直線的傾斜角.
∴直線的參數(shù)方程為.
代入,得.
設(shè),兩點(diǎn)對應(yīng)的參數(shù)為,,則,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.
(1)當(dāng)a=3時,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上一點(diǎn),點(diǎn)是曲線上一點(diǎn),的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是的反函數(shù),定義:若對于給定實數(shù),函數(shù)與)互成反函數(shù),則稱滿足“和性質(zhì)”,若函數(shù)與互為反函數(shù),則稱滿足積性質(zhì)
(1)判斷函數(shù)是否滿足“1和性質(zhì)”,并說明理由;
(2)求所有滿足“2和性質(zhì)”的一次函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場調(diào)查,某商品每噸的價格為萬元時,該商品的月供給量為噸,;月需求量為噸,,當(dāng)該商品的需求量大于供給量時,銷售量等于供給量;當(dāng)該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.
(1)已知,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第26屆世界大學(xué)生夏季運(yùn)動會將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):
若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔(dān)任“禮儀小姐”。
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?
(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別是橢圓C:的左、右焦點(diǎn),過且斜率不為零的動直線l與橢圓C交于A,B兩點(diǎn).
Ⅰ求的周長;
Ⅱ若存在直線l,使得直線,AB,與直線分別交于P,Q,R三個不同的點(diǎn),且滿足P,Q,R到x軸的距離依次成等比數(shù)列,求該直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面ABC,點(diǎn)D,E,F分別為PC,AB,AC的中點(diǎn).
(Ⅰ)求證:平面DEF;
(Ⅱ)求證:.
閱讀下面給出的解答過程及思路分析.
解答:(Ⅰ)證明:在中,因為E,F分別為AB,AC的中點(diǎn),所以①.
因為平面DEF,平面DEF,所以平面DEF.
(Ⅱ)證明:因為平面ABC,平面ABC,所以②.
因為D,F分別為PC,AC的中點(diǎn),所以.所以.
思路第(Ⅰ)問是先證③,再證“線面平行”;
第(Ⅱ)問是先證④,再證⑤,最后證“線線垂直”.
以上證明過程及思路分析中,設(shè)置了①~⑤五個空格,如下的表格中為每個空格給出了三個選項,其中只有一個正確,請選出你認(rèn)為正確的選項,并填寫在答題卡的指定位置.
空格 | 選項 | ||
① | A. | B. | C. |
② | A. | B. | C. |
③ | A.線線垂直 | B.線面垂直 | C.線線平行 |
④ | A.線線垂直 | B.線面垂直 | C.線線平行 |
⑤ | A.線面平行 | B.線線平行 | C.線面垂直 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com