已知tan(α+
π
4
)=
1
3
,求證3sin2α=-4cos2α
分析:tan(α+
π
4
)=
1
3
,可得2sinα+cosα=0,要證等式成立,只要證6sinαcosα=-4(cos2α-sin2α),只要證 
 (2sinα+cosα)(sinα-2cosα)=0,而由上可知,(2sinα+cosα)(sinα-2cosα)=0 成立,于是命題得證.
解答:證明:
∵tan(α+
π
4
)=
1
3
,∴
1+tanα
1-tanα
=
1
3
,tanα=-
1
2
,即 2sinα+cosα=0.
要證3sin2α=-4cos2α,只需證6sinαcosα=-4(cos2α-sin2α),
只需證2sin2α-3sinαcosα-2cos2α=0,只需證(2sinα+cosα)(sinα-2cosα)=0,
而2sinα+cosα=0,∴(2sinα+cosα)(sinα-2cosα)=0顯然成立,于是命題得證.
點(diǎn)評:本題考查兩角和差的正切公式,用分析法證明三角恒等式,關(guān)鍵是尋找使等式成立的充分條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如圖:△ABC中,|
AC
|=2|
AB
|
,D在線段BC上,且
DC
=2
BD
,BM是中線,用向量證明AD⊥BM.(平面幾何證明不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+
π
4
)=
1
7
,則tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(α+
π
4
)=2
,則
sinα+cosα
cosα-sinα
的值=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
4
+θ)=3
,則sin2θ-2cos2θ+1的值為
1
5
1
5

查看答案和解析>>

同步練習(xí)冊答案