分析 把圓化為標(biāo)準(zhǔn)方程后得到:圓心坐標(biāo),令x=2t,y=t,消去t即可得到y(tǒng)與x的解析式.
解答 解:把圓的方程化為標(biāo)準(zhǔn)方程得(x-2t)2+(y-t)2=2t2+4,圓心(2t,t)
則圓心坐標(biāo)為$\left\{\begin{array}{l}{x=2t}\\{y=t}\end{array}\right.$,所以消去t可得x=2y,即x-2y=0.
故答案為:x-2y=0
點評 此題考查學(xué)生會將圓的方程變?yōu)闃?biāo)準(zhǔn)方程,會把直線的參數(shù)方程化為一般方程.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2015}-1$ | C. | $\sqrt{2016}-1$ | D. | $\sqrt{2017}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,-$\frac{1}{3}$) | B. | (-3,-1) | C. | (-1,+∞) | D. | (-∞,-1)∪(-$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{x}-\frac{1}{y}>0$ | B. | ${(\frac{1}{2})^x}-{(\frac{1}{2})^y}<0$ | C. | log2x+log2y>0 | D. | sinx-siny>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | i | C. | 1 | D. | -i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com