【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的方程為,曲線為參數(shù),),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線有公共點(diǎn),且直線與曲線的交點(diǎn)恰好在曲線軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.

【答案】(1),;(2)

【解析】

(1)消去參數(shù),即可得到曲線的普通方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可化簡(jiǎn)得到曲線的直角坐標(biāo)方程.

(2)根據(jù)直線與曲線有公共點(diǎn),解得,再聯(lián)立方程組,求得點(diǎn)的坐標(biāo),根據(jù)點(diǎn)在曲線內(nèi),列出不等式組,即可求解。

(1)曲線的普通方程為

曲線的直角坐標(biāo)方程為.

(2)直線與曲線有公共點(diǎn),則圓心到直線的距離為,

,解得.

,得,即

又點(diǎn)在曲線內(nèi),所以,解得.

綜上,的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門學(xué)科中任選3門.若同學(xué)甲必選物理,則下列說法正確的是(

A.甲、乙、丙三人至少一人選化學(xué)與全選化學(xué)是對(duì)立事件

B.甲的不同的選法種數(shù)為15

C.已知乙同學(xué)選了物理,乙同學(xué)選技術(shù)的概率是

D.乙、丙兩名同學(xué)都選物理的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抖音是一款音樂創(chuàng)意短視頻社交軟件,是一個(gè)專注年輕人的15s音樂短視頻社區(qū). 用戶可以通過這款軟件選擇歌曲,拍攝15s的音樂短視頻,形成自己的作品. 20186月首批25家央企集體入駐抖音,一調(diào)研員在某單位隨機(jī)抽取7人進(jìn)行刷抖音時(shí)間的調(diào)查,若抽出的7人中有3人是抖音迷,4人為非抖音迷,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的詳細(xì)登記.

1)用X表示抽取的3人中是抖音迷的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

2)設(shè)A為事件抽取的3人中,既有是抖音迷的員工,也有非抖音迷的員工,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①對(duì)于獨(dú)立性檢驗(yàn),的觀測(cè)值越大,說明兩個(gè)分類變量之間的關(guān)系越強(qiáng);②某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大;③通過回歸直線及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì).其中正確的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自古以來“民以食為天”,餐飲業(yè)作為我國第三產(chǎn)業(yè)中的一個(gè)支柱產(chǎn)業(yè),一直在社會(huì)發(fā)展與人民生活中發(fā)揮著重要作用.某機(jī)構(gòu)統(tǒng)計(jì)了2010~2016年餐飲收入的情況,得到下面的條形圖,則下面結(jié)論中不正確的是( )

A. 2010~2016年全國餐飲收入逐年增加

B. 2016年全國餐飲收入比2010年翻了一番以上

C. 2010~2016年全國餐飲收入同比增量最多的是2015年

D. 2010~2016年全國餐飲收入同比增量超過3000億元的年份有3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,.

1)若對(duì)任意,恒成立,求的取值范圍;

2,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線 與橢圓有且只有一個(gè)公共點(diǎn).

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)是坐標(biāo)原點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn)、,且與直線交于點(diǎn),證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形.

若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案