14.若橢圓M1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{_{1}^{2}}$=1(a1>b1>0)和橢圓M2:$\frac{{x}^{2}}{{a}_{2}^{2}}$+$\frac{{y}^{2}}{_{2}^{2}}$=1(a2>b2>0)的長軸長相等,c1、c2分別為它們的半焦距,且b1>b2.給出下列五個命題,其中為真命題的是②④⑤(寫出所有真命題的序號)
①設(shè)橢圓的離心率為e,則e1>e2;②b12-b22=c22-c12;③b2c1>b1c2;
④設(shè)橢圓M1的焦點F1、F2,P1為橢圓M1上的任意一點,橢圓M2的焦點F3、F4,P2為橢圓M2上的任意一點,則∠F1P1F2和∠F3P2F4都取最大角時,∠F1P1F2<∠F3P2F4
⑤若稱橢圓上的點與焦點之間的線段之間的線段長度為焦半徑,則橢圓M1的最短的焦半徑比橢圓M2的最短的焦半徑要長.

分析 利用橢圓M1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{_{1}^{2}}$=1(a1>b1>0)和橢圓M2:$\frac{{x}^{2}}{{a}_{2}^{2}}$+$\frac{{y}^{2}}{_{2}^{2}}$=1(a2>b2>0)的長軸長相等,c1、c2分別為它們的半焦距,且b1>b2.對五個命題,分別進行判斷,即可得出結(jié)論.

解答 解:①設(shè)橢圓的離心率為e,因為b1>b2,所以c1<c2,則e1<e2,故不正確;
②因為a1=a2,所以b12+c12=b22+c22,所以b12-b22=c22-c12,故正確;
③因為b1>b2,c1<c2,所以b2c1<b1c2,故不正確;
④設(shè)橢圓M1的焦點F1、F2,P1為橢圓M1上的任意一點,橢圓M2的焦點F3、F4,P2為橢圓M2上的任意一點,則因為b1>b2,c1<c2,所以∠F1P1F2和∠F3P2F4都取最大角時,∠F1P1F2<∠F3P2F4,故正確;
⑤若稱橢圓上的點與焦點之間的線段之間的線段長度為焦半徑,則橢圓M1的最短的焦半徑a1-c1比橢圓M2的最短的焦半徑a2-c2要長,故正確.
故答案為:②④⑤.

點評 本題考查橢圓的性質(zhì),考查命題真假判斷,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}中,a2+a6=16,則a4=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,Rt△ABC中,斜邊AB=2,∠A=30°,若A、B分別在大小為45°的∠O兩邊上滑動,則OC的最大值為$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2. 如圖程序框圖,當(dāng)輸出的任何一個確定的y值時恰好只對應(yīng)輸入唯一的x值,則這是輸出的y值的范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的點均在C2:(x-1)2+y2=$\frac{1}{4}$外,且對C1上任意一點M,M到直線x=-$\frac{1}{2}$的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程;
(2)已知直線l過定點P(-2,1),斜率為k,當(dāng) k為何值時,直線l與曲線C1只有一個公共點點;有兩個公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正四棱柱ABCD-A1B1C1D1的底面邊長為2,側(cè)棱長為底面邊長的2倍,E點為AD的中點,則三棱錐D-BEC1的體積為( 。
A.$\frac{8}{3}$B.4C.$\frac{4}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個頂點是(0,1),離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知矩形ABCD的四條邊都與橢圓C相切,設(shè)直線AB方程為y=kx+m,求矩形ABCD面積的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.與雙曲線C:$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{4}$=1共焦點,且過點(0,3)的橢圓的離心率為( 。
A.$\frac{2\sqrt{34}}{17}$B.$\frac{\sqrt{6}}{3}$C.$\frac{4\sqrt{7}}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的首項a1=1,前n項和為Sn,且S1,$\frac{1}{2}{S_3},\frac{1}{3}{S_5}$成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
( 2)若數(shù)列{bn}為遞增的等比數(shù)列,且集合{b1,b2,b3}⊆{a1,a2,a3,a4,a5},設(shè)數(shù)列{an•bn}的前n項和為Tn,求Tn

查看答案和解析>>

同步練習(xí)冊答案