【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程.
(Ⅰ)當(dāng)時(shí),判斷直線與的關(guān)系;
(Ⅱ)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP=2,D是AP的中點(diǎn),E,F,G分別是PC,PD,CB的中點(diǎn),將△PCD沿CD折起,使點(diǎn)P在平面ABCD內(nèi)的射影為點(diǎn)D,如圖(2).
(1)求證:AP∥平面EFG;
(2)求三棱錐P-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“金導(dǎo)電、銀導(dǎo)電、銅導(dǎo)電、錫導(dǎo)電,所以一切金屬都導(dǎo)電”.此推理方法是( )
A. 完全歸納推理 B. 歸納推理 C. 類(lèi)比推理 D. 演繹推理
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有42名男生,30名女生,已知男女身高各有明顯不同,現(xiàn)欲調(diào)查平均身高,若采用分層抽樣方法,抽取男生1人,女生1人,這種做法是否合適,若不合適,應(yīng)怎樣抽取?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的為( )
A. 線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng)
B. 線性相關(guān)系數(shù)r越小,兩個(gè)變量的線性相關(guān)性越弱
C. 用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好
D. 殘差平方和越小的模型,模型擬合的效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某設(shè)備在正常運(yùn)行時(shí),產(chǎn)品的質(zhì)量,其中,.為了檢驗(yàn)設(shè)備是否正常運(yùn)行,質(zhì)量檢查員需要隨機(jī)的抽取產(chǎn)品,測(cè)其質(zhì)量.
(1)當(dāng)質(zhì)量檢查員隨機(jī)抽檢時(shí),測(cè)得一件產(chǎn)品的質(zhì)量為,他立即要求停止生產(chǎn),檢查設(shè)備.請(qǐng)你根據(jù)所學(xué)知識(shí),判斷該質(zhì)量檢查員的決定是否有道理,并說(shuō)明你判斷的依據(jù);
進(jìn)而,請(qǐng)你揭密質(zhì)量檢測(cè)員做出“要求停止生產(chǎn),檢查設(shè)備”的決定時(shí)他參照的質(zhì)量參數(shù)標(biāo)準(zhǔn);
(2)請(qǐng)你根據(jù)以下數(shù)據(jù),判斷優(yōu)質(zhì)品與其生產(chǎn)季節(jié)有關(guān)嗎?
(3)該質(zhì)量檢查員從其住宅小區(qū)到公司上班的途中要經(jīng)過(guò)個(gè)有紅綠燈的十字路口,假設(shè)他在每個(gè)十字路口遇到紅燈或綠燈是相互獨(dú)立的,并且概率均為.求該質(zhì)量檢查員在上班途中遇到紅燈的期望和方差.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的左右焦點(diǎn)分別為,,且離心率為,點(diǎn)為橢圓上一動(dòng)點(diǎn),面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為,過(guò)右焦點(diǎn)的直線與橢圓相交于,兩點(diǎn),連結(jié),并延長(zhǎng)交直線分別于,兩點(diǎn),問(wèn)是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:實(shí)數(shù)x,y滿足x>1且y>1,命題q: 實(shí)數(shù)x,y滿足x+y>2,則p是q的( )
A. 充要條件 B. 充分不必要條件
C. 必要不充分條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足:,.
(1)求最小的正實(shí)數(shù),使得對(duì)任意的,恒有;
(2)求證:對(duì)任意的正整數(shù),恒有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com