若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.
對于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,進而確定f(x)的解析式.對于(2),可利用函數(shù)思想求得.
[解析] (1)由f(0)=1得,c=1.
∴f(x)=ax2+bx+1.
又f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,
∴
因此,f(x)=x2-x+1.
(2)f(x)>2x+m等價于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函數(shù)g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可.
∵g(x)=x2-3x+1-m在[-1,1]上單調(diào)遞減,
∴g(x)min=g(1)=-m-1,
由-m-1>0得,m<-1.
因此滿足條件的實數(shù)m的取值范圍是(-∞,-1).
科目:高中數(shù)學(xué) 來源: 題型:
若冪函數(shù)f(x)的圖象經(jīng)過點A,設(shè)它在A點處的切線為l,則過點A與l垂直的直線方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用min{a,b}表示a、b兩數(shù)中的最小值,若函數(shù)f(x)=min{|x|,|x+t|}的圖象關(guān)于直線x=-對稱,則t的值為( )
A.-2 B.2
C.-1 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)若g(x)=f(x)+,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三個函數(shù)f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零點依次為a,b,c,則( )
A.a<b<c B.a<c<b
C.b<a<c D.c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
的圖象如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個不同的數(shù)x1,x2,…,xn,使得,則n的取值范圍為( )
A.{2,3} B.{2,3,4}
C.{3,4} D.{3,4,5}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0),點在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點,O為坐標原點,若點Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com