【題目】某班名學(xué)生在一次坐位體前屈測試中,成績?nèi)拷橛?/span>與之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,下圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)若成績大于或等于且小于認(rèn)為良好,求該班在這次坐位體前屈測試中成績良好的人數(shù);
(Ⅱ)若成績之差的絕對值大于認(rèn)為兩位學(xué)生的身體韌度存在明顯差異.現(xiàn)從第一、五組中隨機(jī)取出兩個(gè)成績,求這兩位學(xué)生的身體韌度存在明顯差異的概率.
【答案】(Ⅰ) 人;(Ⅱ)
【解析】試題分析:
(Ⅰ)利用頻率分布直方圖對應(yīng)的概率值結(jié)合總?cè)藬?shù)可得該班成績良好的人數(shù)為人.
(Ⅱ)利用題意列出所有可能的事件,結(jié)合古典概型公式可得: .
試題解析:
(Ⅰ)由頻率分布直方圖知,
成績在內(nèi)的人數(shù)為: (人),
所以該班成績良好的人數(shù)為人.
(Ⅱ)由頻率分布直方圖知:成績在的人數(shù)為人,設(shè)為, , ;成績在的人數(shù)為人,設(shè)為, , , .
若, 時(shí),有, , 種情況;
若, 時(shí),有, , , , , 種情況;
若, 分別在和內(nèi)時(shí),有下表種情況.
所以基本事件總數(shù)為種,而事件“”所包含的基本事件個(gè)數(shù)有種,
所以.
故從第一、五組中隨機(jī)取出兩個(gè)成績,韌度存在明顯差異的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{}中,,且對任意正整數(shù)都成立,數(shù)列{}的前n項(xiàng)和為Sn。
(1)若,且,求a;
(2)是否存在實(shí)數(shù)k,使數(shù)列{}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有k值,若不存在,請說明理由;
(3)若。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax﹣2alnx(a∈R),則下列說法正確的是 ①當(dāng)a<0時(shí),函數(shù)y=f(x)有零點(diǎn);
②若函數(shù)y=f(x)有零點(diǎn),則a<0;
③存在a>0,函數(shù)y=f(x)有唯一的零點(diǎn);
④若函數(shù)y=f(x)有唯一的零點(diǎn),則a≤1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬元,每生產(chǎn)千件,需另投入成本為 (萬元), .每件產(chǎn)品售價(jià)為500元.該新產(chǎn)品在市場上供不應(yīng)求可全部賣完.
(Ⅰ)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若能構(gòu)成映射,下列說法正確的有 ( )
(1)A中的任一元素在B中必須有像且唯一;
(2)A中的多個(gè)元素可以在B中有相同的像;
(3)B中的多個(gè)元素可以在A中有相同的原像;
(4)像的集合就是集合B.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: . .
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為:,當(dāng)時(shí),若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問函數(shù)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出轉(zhuǎn)點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)與雙曲線: 的右焦點(diǎn)的連線交于第一象限的點(diǎn),若在點(diǎn)處的切線平行于的一條漸近線,則( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com