【題目】如圖,在矩形中,,,M上的一點(diǎn),以為折痕把折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且平面平面.連接,,點(diǎn)N的中點(diǎn),且平面.

1)求線段的長(zhǎng);

2)求平面與平面所成銳二面角的余弦值.

【答案】112

【解析】

1)令平面的交點(diǎn)為E,證明平面,得到四邊形為平行四邊形,得到長(zhǎng)度.

2)以M為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的法向量,為平面的一個(gè)法向量,計(jì)算夾角得到答案.

1)令平面的交點(diǎn)為E,因?yàn)?/span>平面,

平面平面,所以.

在矩形中,,且平面,平面,

平面.

又平面平面,所以,所以四邊形為平行四邊形,

且點(diǎn)N的中點(diǎn),點(diǎn)E的中點(diǎn),故.

2)由題易得,所以,即.

又平面平面,所以平面,

M為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

,,,.

所以.

設(shè)平面的法向量,則,即

可取.

易得為平面的一個(gè)法向量.

因?yàn)?/span>.

所以平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列、、滿足,

1)若數(shù)列是等比數(shù)列,試判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;

2)若恰好是一個(gè)等差數(shù)列的前項(xiàng)和,求證:數(shù)列是等差數(shù)列;

3)若數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與橢圓交于不同的兩點(diǎn),.

1)若線段的中點(diǎn)為,求直線的方程;

2)若的斜率為,且過(guò)橢圓的左焦點(diǎn),的垂直平分線與軸交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,經(jīng)過(guò)左焦點(diǎn)的最短弦長(zhǎng)為3,離心率為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)的直線與軸正半軸交于點(diǎn),與橢圓交于點(diǎn),軸,過(guò)的另一直線與橢圓交于、兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問(wèn)答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績(jī)的中位數(shù)均為7

B.乙的成績(jī)的平均分為6.8

C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績(jī)的方差小于乙的成績(jī)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于曲線,有下述四個(gè)結(jié)論:

①曲線C是軸對(duì)稱圖形;

②曲線C關(guān)于點(diǎn)中心對(duì)稱;

③曲線C上的點(diǎn)到坐標(biāo)原點(diǎn)的距離最小值是

④曲線C與坐標(biāo)軸圍成的圖形的面積不大于,

其中所有正確結(jié)論的編號(hào)是(

A.①③B.①④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線相交于兩點(diǎn),點(diǎn)是拋物線的準(zhǔn)線與以為直徑的圓的公共點(diǎn),則下列結(jié)論正確的是(

A.B.C.D.的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,若將函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)縮短到原來(lái)的,再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則下列命題正確的是( ).

A.函數(shù)的解析式為

B.函數(shù)的解析式為

C.函數(shù)圖象的一條對(duì)稱軸是直線

D.函數(shù)在區(qū)間上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的四個(gè)頂點(diǎn)圍成的四邊形面積為,圓經(jīng)過(guò)橢圓的短軸端點(diǎn).

求橢圓的方程;

過(guò)橢圓的右焦點(diǎn)作互相垂直的兩條直線分別與橢圓相交于,,四點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案