若f(x),g(x)是定義在R上的函數(shù),f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)+g(x)=
1
x2-x+1
,求f(x)的表達(dá)式.
考點:函數(shù)解析式的求解及常用方法,奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的性質(zhì)構(gòu)造方程組進(jìn)行求解.
解答: 解:∵f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)+g(x)=
1
x2-x+1
,①
∴f(-x)+g(-x)=
1
x2+x+1
,
即-f(x)+g(x)=
1
x2+x+1
,②
①-②得2f(x)=
1
x2-x+1
-
1
x2+x+1

即f(x)=
x
(x2-x+1)(x2+x+1)
點評:本題主要考查函數(shù)解析式的求解,根據(jù)函數(shù)的奇偶性建立方程組,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=5sin(x+20°)-5sin(x+80°)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實數(shù)x,y滿足(x-2)2+y2=3,那么
y
x
的最大值是( 。
A、
3
3
B、
3
2
C、
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R,則“a=b”是“a2=b2”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3+3x2-12x+5.
(Ⅰ)求曲線y=f(x)在點(0,5)處的切線方程;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
tan10°+tan50°
1-tan10°•tan50°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

第一屆全國青年運動會將于2015年10月18日在福州舉行.主辦方在建造游泳池時需建造附屬室外蓄水池,蓄水池要求容積為300m3,深為3m.如果池底每平方米的造價為120元,池壁每平方米的造價為100元,那么怎樣設(shè)計水池的底面,才能使蓄水池總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
2
,α為第二象限角,則tanα的值是( 。
A、-
3
B、-
3
3
C、-
1
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0),拋物線C2:x2+by=b2
(1)若C2經(jīng)過C1的兩個焦點,求C1的離心率;
(2)設(shè)A(0,b),Q(3
3
,
5
4
b),又M,N為C1與C2不在y軸上的兩個交點,若△AMN的垂心為B(0,
3
4
b),且△QMN的重心在C2上,求橢圓C1和拋物線C2的方程.

查看答案和解析>>

同步練習(xí)冊答案