【題目】南北朝時(shí)期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個(gè)平行平面之間的幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,現(xiàn)有一個(gè)圓柱體和一個(gè)長(zhǎng)方體,它們的底面面積相等,高也相等,若長(zhǎng)方體的底面周長(zhǎng)為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高(

A.有最小值B.有最大值C.有最小值D.有最大值

【答案】C

【解析】

由條件可得長(zhǎng)方體的體積為,設(shè)長(zhǎng)方體的底面相鄰兩邊分別為,根據(jù)基本不等式,可求出底面面積的最大值,進(jìn)而求出高的最小值,得出結(jié)論.

依題意長(zhǎng)方體的體積為,設(shè)圓柱的高為

長(zhǎng)方體的底面相鄰兩邊分別為,

,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保障全國(guó)第四次經(jīng)濟(jì)普查順利進(jìn)行,國(guó)家統(tǒng)計(jì)局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).在普查過(guò)程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶登記. 由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn). 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個(gè)體經(jīng)營(yíng)戶,普查情況如下表所示:

普查對(duì)象類別

順利

不順利

合計(jì)

企事業(yè)單位

40

10

50

個(gè)體經(jīng)營(yíng)戶

100

50

150

合計(jì)

140

60

200

(1)寫出選擇 5 個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;

(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類別有關(guān)”;

(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個(gè)體經(jīng)營(yíng)戶作為普查對(duì)象,入戶登記順利的對(duì)象數(shù)記為, 寫出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校閱覽室的一個(gè)書(shū)架上有6本不同的課外書(shū),有5個(gè)學(xué)生想閱讀這6本書(shū),在同一時(shí)間內(nèi)他們到這個(gè)書(shū)架上取書(shū).

1)求每個(gè)學(xué)生只取1本書(shū)的不同取法種數(shù);

2)求每個(gè)學(xué)生最少取1本書(shū),最多取2本書(shū)的不同取法種數(shù);

3)求恰有1個(gè)學(xué)生沒(méi)取到書(shū)的不同取法種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)若在區(qū)間上具有相同的單調(diào)性,求實(shí)數(shù)的取值范圍;

(2)若,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 下列結(jié)論錯(cuò)誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“, ”的否定是“,

D. 若“”為假命題,則均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求的值;

(2)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的,.當(dāng)時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.

(3)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱直線與曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,

(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),連結(jié),當(dāng)的面積最大時(shí),__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校夏令營(yíng)有3名男同學(xué)3名女同學(xué),其年級(jí)情況如下表:


一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同)

用表中字母列舉出所有可能的結(jié)果

設(shè)為事件選出的2人來(lái)自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué),求事件發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案