(文)已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線 相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn)

(1);(2);(3)

解析試題分析:(1)由圓心在軸,可設(shè)圓心為,又直線與圓相切,∴圓心到直線的距離,列式求,則圓的標(biāo)準(zhǔn)方程可求;(2)因?yàn)橹本與圓相交于兩點(diǎn),則,解不等式可求實(shí)數(shù)的取值范圍;(3)首先根據(jù)垂直關(guān)系得,又直線過(guò)點(diǎn),根據(jù)直線的點(diǎn)斜式方程寫(xiě)出的方程為,由垂徑定理可知,弦的垂直平分線必過(guò)圓心,將圓心代入,可求的值,再檢驗(yàn)直線是否圓相交于兩點(diǎn).
試題解析:(1)設(shè)圓心為(m∈Z),由于圓與直線4x+3y-29=0相切,且半徑為5,∴即|4m-29|=25,即4m-29=25或4m-29=-25,解得,或,因?yàn)閙為整數(shù),故m=1,故所求的圓的方程是;
(2) 此時(shí),圓心C(1, 0)與該直線的距離,
,即:
(3)設(shè)符合條件的實(shí)數(shù)a存在,∵a≠0,則直線的斜率為的方程為,即,由于直線垂直平分弦AB,故圓心M(1,0)必在,所以1+0+2-4a=0,解得,
經(jīng)檢驗(yàn),直線ax-y+5=0與圓有兩個(gè)交點(diǎn),故存在實(shí)數(shù),使得過(guò)點(diǎn)P(-2,4)的直線垂直平分弦AB.
考點(diǎn):1、圓的標(biāo)準(zhǔn)方程;2、直線和圓的位置關(guān)系;3、點(diǎn)到直線的距離公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

兩條直線l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分別求滿足下列條件的m的值.
(1) l1與l2相交;
(2) l1與l2平行;
(3) l1與l2重合;
(4) l1與l2垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線l經(jīng)過(guò)點(diǎn),且和圓C:相交,截得弦長(zhǎng)為,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

光線從點(diǎn)射出,到軸上的點(diǎn)后,被軸反射,這時(shí)反射光線恰好過(guò)點(diǎn),求所在直線的方程及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的頂點(diǎn)A(0,1),AB邊上的中線CD所在直線方程為,AC邊上的高BH所在直線方程為.
(1)求的項(xiàng)點(diǎn)B、C的坐標(biāo);
(2)若圓M經(jīng)過(guò)不同的三點(diǎn)A、B、P(m、0),且斜率為1的直線與圓M相切于點(diǎn)P
求:圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

直線x+m2y+6=0與直線(m-2)x+3my+2m=0沒(méi)有公共點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)求過(guò)點(diǎn)且與的距離相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC中,各點(diǎn)的坐標(biāo)分別為,求:
(1)BC邊上的中線AD的長(zhǎng)度和方程;
(2)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)、到直線的距離相等,且直線經(jīng)過(guò)兩條直線的交點(diǎn),求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案