【題目】已知函數(shù).

(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) m的取值范圍是;(2)實(shí)數(shù)a的取值范圍是.

【解析】試題分析:(1)即求函數(shù)在區(qū)間上值域,先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)數(shù)符號(hào)變化規(guī)律,確定單調(diào)性,進(jìn)而根據(jù)單調(diào)性求值域,(2)先參變分離,轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)最值:的最小值,利用二次求導(dǎo)可得函數(shù)單調(diào)性,再根據(jù)單調(diào)性確定其最小值取法,最后根據(jù)最小值得實(shí)數(shù)的取值范圍.

試題解析:(1)方程即為.

,則.

,則(舍),.

當(dāng)x∈[1, 3]時(shí),隨x變化情況如表:

x

1

3

0

極大值

∴當(dāng)x∈[1,3]時(shí),.

∴m的取值范圍是.

(2)據(jù)題意,得對(duì)恒成立.

,

.

,則當(dāng)x>0時(shí),,

∴函數(shù)上遞增.

,

存在唯一的零點(diǎn)c∈(0,1),且當(dāng)x∈(0,c)時(shí),;當(dāng)時(shí),

.

∴當(dāng)x∈(0,c)時(shí),;當(dāng)時(shí),.

在(0,c)上遞減,在上遞增,從而.

,即,兩邊取對(duì)數(shù)得,

.

,即所求實(shí)數(shù)a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長(zhǎng)方體中,

(1)求直線所成角;

(2)求直線與平面所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)在原點(diǎn),且該拋物線經(jīng)過點(diǎn),其焦點(diǎn)軸上.

(Ⅰ)求過點(diǎn)且與直線垂直的直線的方程;

(Ⅱ)設(shè)過點(diǎn)的直線交拋物線兩點(diǎn),,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓的上下兩個(gè)焦點(diǎn)分別為,且,橢圓過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的一個(gè)頂點(diǎn)為,直線交橢圓于另一個(gè)點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于在區(qū)間上有意義的函數(shù),滿足對(duì)任意的,,有恒成立,厄稱上是“友好”的,否則就稱上是“不友好”的,現(xiàn)有函數(shù).

(1)若函數(shù)在區(qū)間)上是“友好”的,求實(shí)數(shù)的取值范圍;

(2)若關(guān)于的方程的解集中有且只有一個(gè)元素,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于區(qū)間,若函數(shù)同時(shí)滿足:①上是單調(diào)函數(shù);②函數(shù)的值域是,則稱區(qū)間為函數(shù)保值區(qū)間.1)寫出函數(shù)的一個(gè)保值區(qū)間為_____________;(2)若函數(shù)存在保值區(qū)間,則實(shí)數(shù)的取值范圍為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù).

1)若函數(shù),求的值;

2)若函數(shù),求的值域;

3)若存在,使得,則稱函數(shù)函數(shù),若函數(shù) 函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) 在橢圓上,且橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)記橢圓的左、右頂點(diǎn)分別為、,點(diǎn)軸上任意一點(diǎn)(異于點(diǎn)),過點(diǎn)的直線與橢圓相交于兩點(diǎn).

①若點(diǎn)的坐標(biāo)為,直線的斜率為,求的面積;

②若點(diǎn)的坐標(biāo)為,連結(jié)交于點(diǎn),記直線的斜率分別為,證明:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是奇函數(shù).

1)求實(shí)數(shù)的值;

2)若,,求的取值范圍.

3)若,且恒成立,求的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案