已知f(α)=
sin(α-3π)cos(2π-α)sin(-α+
2
)
cos(-π-α)sin(-π-α)

(1)化簡(jiǎn)f(α);
(2)若α=-
31π
3
,求f(α)的值.
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:(1)直接利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值;
(2)把α=-
31π
3
代入(1)中的函數(shù)解析式,然后利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)求值.
解答: 解:(1)f(α)=
sin(α-3π)cos(2π-α)sin(-α+
2
)
cos(-π-α)sin(-π-α)

=
-sin(3π-α)•cos(-α)•(-cosα)
cos(π+α)•[-sin(π+α)]

=
-sinα•cosα•(-cosα)
-cosα•sinα
=-cosα;
(2)∵α=-
31π
3
,f(α)=-cosα,
∴f(α)=-cos(-
31π
3

=-cos
31π
3
=-cos(10π+
π
3
)=-cos
π
3
=-
1
2
點(diǎn)評(píng):本題考查三角函數(shù)的化簡(jiǎn)求值,考查了誘導(dǎo)公式的應(yīng)用,是中低檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們將不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)稱為切點(diǎn).解決下列問題:已知拋物線x2=2py(p>0)上的點(diǎn)(x0,3)到焦點(diǎn)的距離等于4,直線l:y=kx+b與拋物線相交于不同的兩點(diǎn)A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值).設(shè)線段AB的中點(diǎn)為D,與直線l:y=kx+b平行的拋物線的切點(diǎn)為C.
(1)求出拋物線方程,并寫出焦點(diǎn)坐標(biāo)、準(zhǔn)線方程;
(2)用k、b表示出C點(diǎn)、D點(diǎn)的坐標(biāo),并證明CD垂直于x軸;
(3)求△ABC的面積,證明△ABC的面積與k、b無關(guān),只與h有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1、a2、a3、a4為自然數(shù),集合A={a1,a2,a3,a4},集合B={a12,a22,a32,a42},且a1<a2<a3<a4,并滿足A∩B={a1,a4},a1+a4=10,A∪B中的所有元素之和為124,求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α:0≤x<3,β:-1<x≤4,γ:2x2+mx-1<0.
(1)若α是γ的充分條件,求m的取值范圍.
(2)若β是γ的必要條件,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,且A={x|x<-1或x>2},B={y|y=x2+a},若∁uA⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若在定義域存在實(shí)數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2bx-4a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(m2-1)x2-(m+1)x+n-2在R上是奇函數(shù),求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
3
4
,求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈A時(shí),有
1
x
∈A,則稱A是“和諧集合”.集合M={-1,0,
1
3
,
1
4
,1,2,3,4}的所有非空子集中“和諧集合“的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案