已知經(jīng)過點(diǎn)P(0,2),且與橢圓C:
x2
4
+
y2
2
=1相切的直線有兩條,分別為m,n.
(1)求直線m,n的方程;
(2)設(shè)直線m,n與橢圓C的兩切點(diǎn)分別為C、D(其中C在y軸左側(cè),D在y軸右側(cè)),分別過C、D兩點(diǎn)作相應(yīng)切線的垂線l1、l2,且l1∩l2=A,橢圓的左右焦點(diǎn)分別為F1、F2,求
F1A
F2A
的值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)直線方程為y=kx+2,代入橢圓C:
x2
4
+
y2
2
=1,消去y,利用△=0,即可求直線m,n的方程;
(2)求出l1、l2,分別為y=
2
x+3,y=-
2
x+3,可得A的坐標(biāo),即可求
F1A
F2A
的值.
解答: 解:(1)設(shè)直線方程為y=kx+2,代入橢圓C:
x2
4
+
y2
2
=1,
消去y可得:(2+4k2)x2+16kx+8=0,
∴△=(16k)2-32(2+4k2)=0,
∴k=±
2
2
,
∴直線m,n的方程為y=±
2
2
x+2;
(2)由(1)知C(-
2
,1),D(
2
,1),則
l1、l2,分別為y=
2
x+3,y=-
2
x+3,
∵l1∩l2=A,
∴A(0,3),
∵F1(-
2
,0),F(xiàn)2
2
,0),
F1A
F2A
=(
2
,3)•(-
2
,3)=7.
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查向量知識(shí),考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(
6
2
,
1
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:y=kx+m(k≠0)與橢圓C交于M,N兩點(diǎn),直線OM、ON的斜率存在且和為4k,求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三名音樂愛好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為
2
3
, 
3
4
, 
1
2
,他們海選合格與不合格是相互獨(dú)立的.
(Ⅰ)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;
(Ⅱ)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長為m+1(m>0)的線段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),點(diǎn)M是線段AB上的一點(diǎn),且
AM
=m
MB

(1)求點(diǎn)M的軌跡Γ的方程,并判斷軌跡Γ為何種圓錐曲線;
(2)設(shè)過點(diǎn)Q(
1
2
,0)且斜率不為0的直線交軌跡Γ于C,D兩點(diǎn).設(shè)點(diǎn)P在x軸上,且恒滿足
S△PQC
S△PQD
=
|PC|
|PD|
,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課不喜歡數(shù)學(xué)課合計(jì)
306090
2090110
合計(jì)50150200
(1)根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有多大的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”?
(2)若采用分層抽樣的方法從不喜歡數(shù)學(xué)課的學(xué)生中隨機(jī)抽取5人,則男生和女生抽取的人數(shù)分別是多少?
(3)從(2)隨機(jī)抽取的5人中再隨機(jī)抽取3人,該3人中女生的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,射線OA、OB關(guān)于x軸對(duì)稱,且∠AOB=60°,在射線OA、OB上分別有動(dòng)點(diǎn)P、Q滿足:S△POQ=9,設(shè)△POQ的重心為G.
(1)求G點(diǎn)的軌跡方程;
(2)點(diǎn)G到直線PQ距離的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙、丁四位同學(xué)報(bào)名參加A、B、C三所高校的自主招生考試,若每位同學(xué)只報(bào)名其中一所高校,且報(bào)名其中任一所高校是等可能的.
(1)求這四位同學(xué)中有人報(bào)名A的概率;
(2)求三所高校都有人報(bào)名的概率;
(3)求這四位同學(xué)報(bào)名高校的個(gè)數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若k≥3(k∈N+),試比較logk(k+1)與logk-1k的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案