已知函數(shù)f(x)=2cos2x+2sinxcosx+1.
(1)求f(x)的周期、最值;
(2)求f(x)的單調(diào)增區(qū)間.
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)化簡函數(shù)解析式為,利周期公式求出f(x)的最小正周期和最值.
(2)根三角函數(shù)的單調(diào)性的性質(zhì)即可得到f(x)的單調(diào)增區(qū)間.
解答: 解:(1)f(x)=2cos2x+2sinxcosx+1=(2cos2x-1)+2sinxcosx+2=cos2x+sin2x+2=
2
sin(2x+
π
4
)+2,
則f(x)的最小正周期T=
2
,
當sin(2x+
π
4
)=1時,函數(shù)f(x)取得最大值
2
+2.
當sin(2x+
π
4
)=-1時,函數(shù)f(x)取得最小值2-
2

(2)由-
π
2
+2kπ≤x≤2kπ+
π
2
,k∈Z,
解得kπ-
8
≤x≤kπ+
π
8
,k∈Z,
∴f(x)的單調(diào)增區(qū)間為[kπ-
8
,kπ+
π
8
],k∈Z.
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦函數(shù)的單調(diào)性,周期性及其求法,化簡函數(shù)解析式為,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=cosx(-
π
2
≤x≤
π
2
)與x軸所圍圖形的面積為(  )
A、4B、2C、3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:(
1
2
x<1,q:log2x<0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1(n∈N*),把數(shù)列{an}的各項排列成如圖所示的三角形數(shù)陣.記M(s,t)表示該數(shù)陣中第s行的第t個數(shù),則該數(shù)陣中的數(shù)2011對應(yīng)于( 。
A、M(45,15)
B、M(45,16)
C、M(46,15)
D、M(46,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次象棋比賽的決賽在甲乙兩名旗手之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分;比賽進行五局,積分有超過5分者比賽結(jié)束,否則繼續(xù)進行,根據(jù)以往經(jīng)驗,每局甲贏的概率為
1
2
,乙贏的概率為
1
3
,且每局比賽輸贏互不受影響.若甲第n局贏、平、輸?shù)牡梅址謩e記為an=2,an=1,an=0,n∈N*,1≤n≤5,令 Sn=a1+a2+…+an
(1)求S3=5的概率.
(2)求S5=7的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
2a+b
c
=
cos(A+C)
cosC

(1)求角C的大小,
(2)若c=2,求使△ABC面積最大時a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國PM2.5標準采用世衛(wèi)組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35-75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米及其以上空氣質(zhì)量為超標.某試點城市環(huán)保局從該市市區(qū)2013年3月每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).
(Ⅰ)求該組數(shù)據(jù)的平均數(shù)和方差;
(Ⅱ)若從這6天的數(shù)據(jù)中隨機抽出2天,求恰有一天空氣質(zhì)量超標的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,∠BAD
=90°,PA=AD=AB=
1
2
CD=1,M為PB的中點.
(1)試在CD上確定一點N,使得MN∥平面PAD.
(2)點N在滿足(1)的條件下,求直線MN與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}滿足:Sn為數(shù)列{an}的前n項和,且2,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若an2=(
1
2
 bn,cn=
bn
an
,求數(shù)列{cn}的前n項和.

查看答案和解析>>

同步練習(xí)冊答案