18.設(shè){an}是公比q大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=lna2n+1,n=1,2,3,…,求數(shù)列{bn}的前n項和Tn

分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用等差數(shù)列的通項公式及其對數(shù)運算性質(zhì)即可得出.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
由題意,a1+3,3a2,a3+4構(gòu)成等差數(shù)列.∴6a2=a1+3+a3+4.
聯(lián)立$\left\{\begin{array}{l}{\frac{{a}_{2}}{q}+{a}_{2}+{a}_{2}q=7}\\{6{a}_{2}=\frac{{a}_{2}}{q}+{a}_{2}q+7}\end{array}\right.$,解得a2=2.
代入$\frac{{a}_{2}}{q}$+a2+a2q=7,化簡得2q2-5q+2=0,解得q1=2,q2=$\frac{1}{2}$.
又公比q大于1,∴q=2,a1=1,
∴數(shù)列{an}的通項公式是an=2n-1
(2)由于bn=lna2n+1=ln22n=2nln2,
又bn-bn-1=2ln2(n≥2),
∴數(shù)列{bn}是等差數(shù)列,
∴Tn=$\frac{(_{1}+_{n})}{2}$=(n+1)nln2.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、對數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)g(x)=$\left\{\begin{array}{l}{{e}^{x}}&{x≤0}\\{lnx}&{x>0}\end{array}\right.$,則g(e-1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知四面體ABCD中,AB=CD=$\sqrt{5}$,BC=AD=$\sqrt{10}$,AC=BD=$\sqrt{13}$,若該四面體的各個頂點都在同一球面上,則此球的表面積為( 。
A.42πB.43πC.14πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個焦點為F1,若橢圓上存在一個點P,滿足以橢圓短軸為直徑的圓與線段PF1相切于該線段的中點,則橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點.
(1)求AD1與DB所成角的大。
(2)求AE與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖甲,⊙O的直徑AB=2,圓上兩點C,D在直徑AB的兩側(cè),使$∠CAB=\frac{π}{4}$,$∠DAB=\frac{π}{3}$.沿直徑AB折起,使兩個半圓所在的平面互相垂直(如圖乙),F(xiàn)為BC的中點,E為AO的中點.P為AC上的動點,根據(jù)圖乙解答下列各題:

(1)求點D到平面ABC的距離;
(2)在BD弧上是否存在一點G,使得FG∥平面ACD?若存在,試確定點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)把滿足條件“對任意的s,t∈(一1,1)且s≠t.都有|f(s)-f(t)|≤3|s-t|”的函數(shù)f(x)組成的集合記作集合G.
(1)分別判斷函數(shù)f1(x)=$\sqrt{1+{x}^{2}}$,f2(x)=log2(1+x)是否屬于集合G:
(2)若f3(x)=ax2+bx且f3(x)∈G.求證:當(dāng)x∈(-2,2)時,|f3(x)|≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果點P(sinθcosθ,3sinθ)位于第三象限,則角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=Acos(wx+Φ)(A>0,w>0,|Φ|≤$\frac{π}{2}$)的部分圖象如圖所示:
(1)求f(x)的表達(dá)式;
(2)若cosθ=$\frac{3}{5}$,θ∈($\frac{3}{2}$π,2π),求f(2θ+$\frac{π}{3}$).

查看答案和解析>>

同步練習(xí)冊答案