7.如果點P(sinθcosθ,3sinθ)位于第三象限,則角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由題意可得cosθ>0,sinθ<0,再根據(jù)三角函數(shù)在各個象限中的符號,求得角θ所在的象限.

解答 解:∵點P(sinθcosθ,3sinθ)位于第三象限,∴sinθcosθ<0,3sinθ<0,
即 cosθ>0,sinθ<0,則角θ為第四象限角,
故選:D.

點評 本題主要考查三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)f(x)=2x3-3x2-12x+2+m至少有兩個零點,則實數(shù)m的取值范圍是[-9,18].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是公比q大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=lna2n+1,n=1,2,3,…,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=mx2+3(m-4)x-9.
(1)試判斷函數(shù)f(x)零點的個數(shù);
(2)若滿足f(1-x)=f(1+x),求m的值;
(3)若m=1時,x∈[0,2]上存在x使f(x)-a>0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E的中心在原點,焦點在x軸上,焦距為2$\sqrt{2}$,左頂點和上、下頂點連接成的三角形為正三角形.
(1)求橢圓E的方程:
(2)若對于點M(m,0),存在x軸上的另外-點N,使得過點N的任意直線l,當(dāng)l與橢圓E交于相異兩點P,Q時.$\overrightarrow{MP}•\overrightarrow{MQ}$為定值.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指頭,若和為偶數(shù)算甲贏,否則算乙贏.記甲贏的概率為p1,乙贏的概率為p2,則有(  )
A.p1<p2B.p1>p2C.p1=p2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)f(x)為奇函數(shù),周期為$\frac{π}{2}$,$f(\frac{π}{3})=1$,求$f(\frac{7π}{6})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若過點P(5,-2)的雙曲線的兩條漸近線方程為x-2y=0和x+2y=0,則該雙曲線的實軸長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x2-2(a+1)x-2在(4,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,3]B.(-∞,1)C.[3,+∞)D.(-∞,3)

查看答案和解析>>

同步練習(xí)冊答案