分析 以MNP為底面,Q為頂點(diǎn),則:四面體MNPQ的體積V=$\frac{1}{3}$hS,其中:h是Q點(diǎn)到底面的距離,是定值,h=a,于是,要使得V最大,等價(jià)于使得底面△MNP的面積S最大.
解答 解:以MNP為底面,Q為頂點(diǎn),則:四面體MNPQ的體積V=$\frac{1}{3}$hS
其中:h是Q點(diǎn)到底面的距離,是定值,h=a,
于是,要使得V最大,等價(jià)于使得底面△MNP的面積S最大.
設(shè)A1M=x,A1N=y,B1P=z,(0≤x,y,z≤a)則:
S=S正方形-${S}_{△{A}_{1}MN}$-${S}_{△{B}_{1}NP}$-${S}_{梯形{C}_{1}{D}_{1}MP}$
=a2-$\frac{1}{2}$xy-$\frac{1}{2}$(a-y)z-$\frac{1}{2}$a(a-x+a-z)
=a2-$\frac{1}{2}$xy-$\frac{1}{2}$(a-y)z-a2+$\frac{1}{2}$a(x+z)
=$\frac{1}{2}$(ax-xy+yz)
≤$\frac{1}{2}$[x(a-y)+ya]
≤$\frac{1}{2}$[a(a-y)+ya]
=$\frac{1}{2}$a2
即:S的最大值=$\frac{1}{2}$a2(此時(shí),x=z=a,b可隨意)
故:四面體MNPQ的體積V的最大值=$\frac{1}{3}$aS=$\frac{1}{6}$a3,
故答案為:$\frac{1}{6}$a3.
點(diǎn)評(píng) 本題考查四面體MNPQ的體積V的最大值,考查學(xué)生分析解決問(wèn)題的能力,要使得V最大,等價(jià)于使得底面△MNP的面積S最大是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,-2$\sqrt{5}$+3) | B. | (-∞,-2$\sqrt{5}$+3) | C. | (-$\frac{1}{2}$,4-$\sqrt{17}$) | D. | (-∞,4-$\sqrt{17}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,$\frac{\sqrt{2}}{8}$]∪($\frac{5\sqrt{2}}{8}$,1) | B. | [$\frac{\sqrt{2}}{8}$,$\frac{5\sqrt{2}}{8}$] | C. | [0,$\frac{\sqrt{2}}{8}$] | D. | [0,$\frac{5\sqrt{2}}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|kπ-$\frac{π}{12}$<x<kπ+$\frac{π}{4}$,k∈Z} | B. | {x|kπ+$\frac{π}{4}$<x<kπ+$\frac{11π}{12}$,k∈Z} | ||
C. | {x|kπ-$\frac{π}{6}$<x<kπ+$\frac{π}{2}$,k∈Z} | D. | {x|kπ<x<kπ+$\frac{π}{3}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com