在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將菱形沿對(duì)角線(xiàn)AC折起,使折起后BD=1,則二面角B-AC-D的余弦值為( 。
A、
1
3
B、
1
2
C、
2
2
3
D、
3
2
考點(diǎn):二面角的平面角及求法
專(zhuān)題:解三角形,空間角
分析:先找二面角B-AC-D的平面角,取AC的中點(diǎn)E,根據(jù)已知條件,連接BE,DE,則∠BED便是所找的平面角,把它放在△BED中,根據(jù)已知條件,∠DEC=90°,∠EDC=30°,CD=1,所以DE=
3
2
,所以BE=
3
2
,這樣由余弦定理即可求出cos∠BED.
解答: 解:取AC中點(diǎn)E,連接BE,DE,則DE⊥AC,BE⊥AC;
∴∠BED便是二面角B-AC-D的平面角;
在Rt△CDE中,∠EDC=30°,CD=1,∠DEC=90°;
∴DE=
3
2
,同樣BE=
3
2
,又BD=1;
∴由余弦定理得:cos∠BED=
3
4
+
3
4
-1
3
2
=
1
3

故選:A.
點(diǎn)評(píng):取AC的中點(diǎn),找到二面角的平面角是求解本題的關(guān)鍵,本題考查直角三角形邊角的關(guān)系,余弦定理,二面角及二面角的平面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)l:y=x+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點(diǎn),若OA⊥OB,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(m+1,-3),
b
=(1,m-1),(
a
+
b
)⊥(
a
-
b
),則實(shí)數(shù)m的值為( 。
A、0.2B、25C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(n)為n2+1的各位數(shù)字之和(n∈N*).如:因?yàn)?42+1=197,1+9+7=17,所以f(14)=17.記f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2005(8)=(  )
A、5B、8C、11D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)F到它的一條漸近線(xiàn)距離x滿(mǎn)足a≤x≤3a,則該雙曲線(xiàn)的離心率的取值范圍為( 。
A、(
2,
+∞)
B、(1,
10
C、[2,
10
D、[
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題是( 。
A、存在x0∈R,使得ex0≤0
B、任意x∈R,2x>x2
C、若ab>1,則a,b至少有一個(gè)大于1
D、sin2x+
2
sin2x
≥3(x≠kπ,k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域[-1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題其中錯(cuò)誤的是( 。
x-10245
f x 121.521
A、函數(shù)f(x)的值域?yàn)閇1,2]
B、函數(shù)f(x)在[0,2]上是減函數(shù)
C、如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4
D、當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a最多有4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a1+a5=1,則S5=( 。
A、
5
2
B、5
C、-
5
2
D、-5

查看答案和解析>>

同步練習(xí)冊(cè)答案