若方程
x2
4-t
+
y2
t-1
=1所表示的曲線為C,給出下列四個(gè)命題:
①若C為橢圓,則1<t<4,且t≠
5
2

②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若C表示橢圓,且長軸在x軸上,則1<t<
3
2

其中正確的命題是
 
.(把所有正確命題的序號(hào)都填在橫線上)
考點(diǎn):命題的真假判斷與應(yīng)用
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用圓錐曲線的簡單幾何性質(zhì),對(duì)①②③④四個(gè)選項(xiàng)逐一分析即可.
解答: 解:①若C為橢圓,則
4-t>0
t-1>0
4-t≠t-1
,解得1<t<4,且t≠
5
2
,故①正確;
②若C為雙曲線,則(4-t)(t-1)<0,即(t-4)(t-1)>0,解得t>4或t<1,故②正確;
③若
4-t>0
t-1>0
4-t=t-1
,即t=
5
2
時(shí),曲線C是圓,故③錯(cuò)誤;
④若C表示橢圓,且長軸在x軸上,則4-t>t-1>0,解得1<t<
5
2
,故④錯(cuò)誤;
綜上所述,正確的命題是①②,
故答案為:①②.
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,著重考查橢圓、雙曲線的幾何性質(zhì),考查轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
4
x

(1)證明f(x)在(0,2)上單調(diào)遞減,并求f(x)在[
1
2
,1]上的最值.
(2)判斷f(x)的奇偶性,并證明你的結(jié)論.
(3)函數(shù)f(x)=x+
4
x
(x<0)有最值嗎?如有求出最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反三角函數(shù)的形式表示下列各式中的x值:
(1)sinx=
1
7
,x∈[
π
2
,π
];
(2)cosx=-
5
5
,x∈(-π,0);
(3)tanx=-
2
3
,x∈(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某著名汽車公司2013年年初準(zhǔn)備將10億元資金投資到“車型更新”項(xiàng)目上,現(xiàn)有兩個(gè)項(xiàng)目供選擇:
項(xiàng)目A:新能源汽車,據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到年底可能獲利40%,也可能虧損80%,且這兩種情況發(fā)生的概率分別為
3
4
1
4
;
項(xiàng)目B:城市越野車,據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到年底可能獲利50%,可能虧損30%,也可能不賠不賺,且這三種情況發(fā)生的概率分別為
3
5
、
1
6
、
7
30

(Ⅰ) 針對(duì)以上兩個(gè)投資項(xiàng)目,請(qǐng)你為投資公司選擇一個(gè)合理且較為穩(wěn)妥的項(xiàng)目,并說明理由;
(Ⅱ) 假設(shè)每年兩個(gè)項(xiàng)目的投資環(huán)境及預(yù)期獲利均不變,該投資公司按照你所選擇的項(xiàng)目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(chǎn)(利潤+本金)可以翻一番?(參考數(shù)據(jù):lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
滿足|
a
|=|
b
|=1
|3
a
-2
b
|=
7

(Ⅰ)求
a
,
b
夾角θ的大;
(Ⅱ)求|3
a
+
b
|
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2x-3,x≤0
x+1,x>0
,若f(a)=5,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角α、β滿足sinα-sinβ=-
1
4
,cosα-cosβ=
3
4
,則cos(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則cosA-cosC的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2ωx+
3
sinωxcosωx-
1
2
,其中0<ω<2,且f(
π
6
-x)=f(
π
6
+x),若f(
x0
2
)=
3
5
,x0∈(0,
π
2
),求cosx0

查看答案和解析>>

同步練習(xí)冊(cè)答案