如圖所示,點N在圓x2+y2=4上運動,DN⊥x軸,點M在DN的延長線上,且數(shù)學公式(λ>0).
(1)求點M的軌跡方程,并求當λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)當數(shù)學公式時,(1)所得曲線記為C,已知直線數(shù)學公式,P是l上的動點,射線OP(O為坐標原點)交曲線C于點R,又點Q在OP上且滿足|OQ|•|OP|=|OR|2,求點Q的軌跡方程.

解:(1)設(shè)M(x,y),N(x0,y0),
得 x=x0,y=λy0,

把N(x0,y0)代入圓的方程得,
化簡得

當0<λ<1時,M的軌跡表示焦點在x軸上的橢圓

(2))當時,(1)所得曲線C為
設(shè)P(x1,y1),R(x2,y2),Q(x,y)
∵P在l上、R在橢圓上,∴

設(shè),由比例性質(zhì)得 ,∴x1=tx,y1=ty

代入①得

∵|OQ|•|OP|=|OR|2,∴,

代入②得

由③④聯(lián)立得=,又t≠0,
,原點除外.
化簡得點Q的軌跡方程為x2-2x+4y2-4y=0(原點除外).


分析:(1)利用,確定動點坐標之間的關(guān)系,利用點N在圓x2+y2=4上運動,可以得到點M的軌跡方程,從而可得λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)設(shè)P(x1,y1),R(x2,y2),Q(x,y),根據(jù)比例性質(zhì),條件|OQ|•|OP|=|OR|2,可得坐標之間的關(guān)系,化簡變形即可得到點Q的軌跡方程.
點評:本題重點考查代入法求軌跡方程,考查消參思想,解題的關(guān)鍵是確定動點坐標之間的關(guān)系,綜合性較強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,頂點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足
AM
=2
AP
,
NP
AM
=0,點N的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點A且傾斜角是45°的直線l交曲線E于兩點H、Q,求|HQ|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,點N在圓x2+y2=4上運動,DN⊥x軸,點M在DN的延長線上,且
DM
DN
(λ>0).
(1)求點M的軌跡方程,并求當λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)當λ=
1
2
時,(1)所得曲線記為C,已知直線l:
x
2
+y=1
,P是l上的動點,射線OP(O為坐標原點)交曲線C于點R,又點Q在OP上且滿足|OQ|•|OP|=|OR|2,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:0119 期中題 題型:解答題

如圖所示,點N在圓x2+y2=4上運動,DN⊥x軸,點M在DN的延長線上,且(λ>0),
(1)求點M的軌跡方程,并求當λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)當λ=時,(1)所得曲線記為C,已知直線l:+y=1,P是l上的動點,射線OP(O為坐標原點)交曲線C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,求點Q的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省廣州市實驗中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖所示,點N在圓x2+y2=4上運動,DN⊥x軸,點M在DN的延長線上,且(λ>0).
(1)求點M的軌跡方程,并求當λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)當時,(1)所得曲線記為C,已知直線,P是l上的動點,射線OP(O為坐標原點)交曲線C于點R,又點Q在OP上且滿足|OQ|•|OP|=|OR|2,求點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案