2.(1)若將函數(shù)f(x)=x5表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,求a3
(2)三件產(chǎn)品中含有兩件正品a,b和一件次品c,每次任取一件,按以下方式連取兩次,分別求恰有一件次品的概率.①取后不放回;  ②取后放回.

分析 (1)由條件利用二項(xiàng)展開式的通項(xiàng)公式,求得a3 的值.
(2)①取后不放回,兩次抽取時(shí),根據(jù)等可能事件的概率公式求得恰有一件次品的概率;②取后放回時(shí),利用n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率計(jì)算公式求得恰有一件次品的概率.

解答 解:(1)將函數(shù)f(x)=x5表示為f(x)=[-1+(x+1)]5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,
求得 a3=${C}_{5}^{3}$•(-1)2=10.
(2)①取后不放回,兩次抽取時(shí),恰有一件次品的概率為$\frac{{C}_{2}^{1}{•C}_{1}^{1}}{{C}_{3}^{2}}$=$\frac{2}{3}$;
②取后放回時(shí),恰有一件次品的概率為${C}_{2}^{1}$•$\frac{2}{3}$•$\frac{1}{3}$=$\frac{4}{9}$.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式;n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)是定義在R上以2為周期的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=log2(4x+1),則f($\frac{13}{4}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-klnx,常數(shù)k>0.
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=xf(x)在區(qū)間(1,2)上是增函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出如下三個(gè)命題:
①“x≥2$\sqrt{2}$”是“l(fā)og2(x+1)>2”的充分不必要條件;
②將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{6}$個(gè)單位可得到函數(shù)y=sin2x的圖象;
③$\overrightarrow{a}$,$\overrightarrow$為單位向量,其夾角為θ,若|$\overrightarrow{a}$-$\overrightarrow$|>1,則$\frac{π}{3}$<θ≤π.
其中正確的命題是②③.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,當(dāng)x∈[0,10]時(shí),關(guān)于x的方程f(x)=x-$\frac{1}{5}$的所有解的和為( 。
A.55B.100C.110D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若復(fù)數(shù)z滿足(1+i)z=2-i,求|z+i|.
(2)已知函數(shù)f(x)=x4+x2-1,g(x)=ax3+x2+b(x∈R),其中a,b∈R.
設(shè)F(x)=f(x)+g(x),若對于任意的a∈[-2,2],函數(shù)y=F(x)在區(qū)間[-1,1]上的值恒為負(fù)數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=ln(x2-x)+$\sqrt{4-{2^x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,+∞)∪(-∞,0)B.(1,2]∪(-∞,0)C.(-∞,0)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+1-2sin2x,x∈R,將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)縮短到原來的$\frac{1}{2}$,把所得到的圖象再向左平移$\frac{π}{6}$個(gè)單位長度,得到函數(shù)y=g(x)的圖象,求:
(I)函數(shù)g(x)的解析式和單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,-$\frac{π}{24}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等比數(shù)列{an}中,a1-a3+a5=2,a3-a5+a7=5,那么a5-a7+a9=( 。
A.8B.15C.25D.$\frac{25}{2}$

查看答案和解析>>

同步練習(xí)冊答案