14.函數(shù)y=ln(x2-x)+$\sqrt{4-{2^x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,+∞)∪(-∞,0)B.(1,2]∪(-∞,0)C.(-∞,0)D.(-∞,2]

分析 由根式內(nèi)部的對(duì)數(shù)式大于等于0,對(duì)數(shù)的真數(shù)大于0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{{x}^{2}-x>0}\\{4-{2}^{x}≥0}\end{array}\right.$,解得x<0或1<x≤2.
∴函數(shù)y=ln(x2-x)+$\sqrt{4-{2^x}}$的定義域?yàn)椋?,2]∪(-∞,0).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是各項(xiàng)為正數(shù)的等比數(shù)列,且公比q≠1,若a2=b2,a10=b10,則( 。
A.a6>b6B.a6=b6C.a6<b6D.a6>b6或a6<b6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知直線l:mx-y=4,若直線l與直線x+m(m-1)y=2垂直,則m的值為0,2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)若將函數(shù)f(x)=x5表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,求a3
(2)三件產(chǎn)品中含有兩件正品a,b和一件次品c,每次任取一件,按以下方式連取兩次,分別求恰有一件次品的概率.①取后不放回;  ②取后放回.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合p={x|y=$\sqrt{x}$+1},Q={y|y=x3},則P=[0,+∞),P∩Q=[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.關(guān)于下列命題:
①設(shè)直線2x+3y+1=0和圓x2+y2-2x-3=0相交于A,B,則弦AB的垂直平分線方程是3x-2y-3=0.
②若數(shù)列{an}的前n項(xiàng)和Sn=(n+1)2,則{an}是等差數(shù)列;
③a,b,c是空間三條不同的直線,c是直線a在平面α內(nèi)的射影,且b?a,a?α,若b⊥c則a⊥b;
④已知向量$\overrightarrow{a}=(t,2),\overrightarrow$=(-3,6),若向量$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則實(shí)數(shù)t的取值范圍是t<4;
⑤若定義在R上的函數(shù)f(x)滿足f(x+2)=f(x+1)-f(x),函數(shù)f(x)為奇函數(shù),且f(1)=0,則在區(qū)間[-5,5]上f(x)至少有11個(gè)零點(diǎn).
其中正確命題的序號(hào)是①③⑤(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|x2-2x-8≤0},B={x|x2-(2m-3)x+m(m-3)≤0,m∈R}.
(1)若A∩B=[2,4],求實(shí)數(shù)m的值;
(2)設(shè)全集為R,若A⊆(∁RB),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.用定義證明函數(shù)y=x+$\frac{1}{x}$在(1,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.函數(shù)f(1og2x)=x-$\frac{1}{x}$.
(1)求f(x)的解析式;
(2)求證:函數(shù)f(x)為奇函數(shù);
(3)若實(shí)數(shù)m滿足:f(1-m)+f(1-m2)<0.求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案