【題目】已知( +x22n的展開式中各項(xiàng)系數(shù)的和比(3x﹣1)n的展開式中二項(xiàng)式系數(shù)的和大992,求(2x﹣ 2n的展開式中:
(1)第10項(xiàng)
(2)常數(shù)項(xiàng);
(3)系數(shù)的絕對(duì)值最大的項(xiàng).

【答案】
(1)解:由題意得22n﹣2n=992,解得n=5,

∵(2x﹣ 2n的展開式的通項(xiàng)公式為 ,

令r=9,可得它的展開式中第10項(xiàng),即T10=﹣20x8


(2)解:令10﹣2r=0,求得r=5,可得常數(shù)項(xiàng)為第6項(xiàng),

T6=﹣ 25=﹣8 064.


(3)解:設(shè)第r+1項(xiàng)的系數(shù)的絕對(duì)值最大,即Tr+1= 210r最大,

,即

≤r≤ ,∴r=3,故系數(shù)的絕對(duì)值最大的是第4項(xiàng),

T4=(﹣1)3 27x4=﹣15 360x4


【解析】利用二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),求得第10項(xiàng)、常數(shù)項(xiàng)、以及系數(shù)的絕對(duì)值最大的項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3﹣(a﹣1)x2+b2x,其中a∈{1,2,3,4},b∈{1,2,3},則函數(shù)f(x)在R上是增函數(shù)的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Γ: =1(a>b>0)的右焦點(diǎn)為(2 ,0),且橢圓Γ上一點(diǎn)M到其兩焦點(diǎn)F1 , F2的距離之和為4
(Ⅰ)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓Γ交于不同兩點(diǎn)A,B,且|AB|=3 .若點(diǎn)P(x0 , 2)滿足| |=| |,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)當(dāng)a=1的值時(shí),若直線l:y=kx﹣1與曲線y=f(x)沒有公共點(diǎn),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有4個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有1個(gè)空盒,有幾種放法?
(3)恰有2個(gè)盒子不放球,有幾種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan= (n≥1,n∈Z)
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)求數(shù)列{n2an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式ax2﹣bx+c>0的解集為{x|﹣2<x<3},求不等式cx2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為等邊三角形,AA1=AB=6,D為AC的中點(diǎn).

(1)求證:直線AB1∥平面BC1D;
(2)求證:平面BC1D⊥平面ACC1A1;
(3)求三棱錐C﹣BC1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于棱錐、棱臺(tái)的說法,其中不正確的是( )
A.棱臺(tái)的側(cè)面一定不會(huì)是平行四邊形
B.棱錐的側(cè)面只能是三角形
C.由四個(gè)面圍成的封閉圖形只能是三棱錐
D.棱錐被平面截成的兩部分不可能都是棱錐

查看答案和解析>>

同步練習(xí)冊(cè)答案