16.已知U為全集,集A、B為非空集合,則下面說法正確的有(2)(4)(填序號).
(1)若A∪(∁UB)=U,則A=B;
(2)若A⊆B,則A∩(∁UB)=∅:
(3)若A∪B=B,則(∁UA)⊆(∁UB);
(4)若A?B,則A∩B=A.

分析 根據(jù)并集、交集,以及補(bǔ)集、全集的概念和運(yùn)算,以及子集、真子集的概念便可判斷每一個(gè)說法的正誤,從而找出正確的序號.

解答 解:(1)若A∪(∁UB)=U,則得到B⊆A,得不到A=B;
∴該項(xiàng)錯(cuò)誤;
(2)A⊆B時(shí),∁UB是從U中去掉集合B,從而也去掉了集合A,從而A∩(∁UB)=∅,即該項(xiàng)正確;
(3)A∪B=B,∴A⊆B;
∴(∁UA)?(∁UB);
∴該項(xiàng)錯(cuò)誤;
(4)若A?B,則A∩B=A,即該項(xiàng)正確;
∴正確的序號為:(2),(4).
故答案為:(2),(4).

點(diǎn)評 考查全集、交集、并集,及補(bǔ)集的概念及其運(yùn)算,以及子集、真子集的概念,集合之間的關(guān)系,可借助Venn圖.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四棱錐S一ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點(diǎn),且AD=2,SA=AB=1.
求:(1)SC與平面SAD所成角的正切值;
    (2)SP與平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.y=$\sqrt{sinx}$的定義域?yàn)閧x|2kπ≤x≤π+2kπ,k∈Z},單調(diào)遞增區(qū)間為[2kπ,$\frac{π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若函數(shù)f(x)=$\sqrt{5}$sin(2x+φ)對任意x都有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x).
(1)求f($\frac{π}{3}$)的值;
(2)求φ的最小正值;
(3)當(dāng)φ取最小正值時(shí),若x∈[-$\frac{π}{6}$,$\frac{π}{6}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)y=f1(x)是定義域?yàn)镽的增函數(shù),y=f2(x)是定義域?yàn)镽的減函數(shù),則( 。
A.函數(shù)y=f1(x)+f2(x)是定義城為R的增函數(shù)
B.函數(shù)y=f1(x)+f2(x)是定義城為R的減函數(shù)
C.函數(shù)y=f1(x)-f2(x)是定義城為R的增函數(shù)
D.函數(shù)y=f1(x)-f2(x)是定義城為R的減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.指數(shù)函數(shù)f(x)=ax,a>0,a≠1滿足性質(zhì):對任意的x∈R,f(-x)•f(x)=1,函數(shù)g(x)的定義域?yàn)镽,且g(x)也滿足這個(gè)性質(zhì),若g(x)既不是指數(shù)函數(shù)也不是常值函數(shù),那么g(x)可以是g(x)=-ax(a>0,且a≠1)(x∈R).(任寫一個(gè)符合條件的函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.log2${\;}_{\frac{1}{2}}$x-$\frac{1}{4}$≤0,則x∈[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,∠BAC=120°,D在BC上,且$\overrightarrow{BD}$=$\frac{1}{4}$$\overrightarrow{BC}$,計(jì)算$\overrightarrow{AD}$•$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.150B.300C.400D.200

查看答案和解析>>

同步練習(xí)冊答案