【題目】已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點(diǎn),G、H分別是BC,CD上的點(diǎn),且 . ,則直線FH與直線EG( )
A.平行
B.相交
C.異面
D.垂直
【答案】B
【解析】解::∵四邊形ABCD是空間四邊形,E、F分別是AB、AD的中點(diǎn), ∴EF為三角形ABD的中位線
∴EF∥BD且EF= BD
又∵ . ,
∴△CHG∽△CDB,且HG∥BD,HG= BD
∴在四邊形EFHG中,EF∥HG
即E,F(xiàn),G,H四點(diǎn)共面,且EF≠HG,
∴四邊形EFGH是梯形,
∴直線FH與直線EG相交,
故選B.
【考點(diǎn)精析】掌握異面直線的判定是解答本題的根本,需要知道過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C1: 和圓C2:x2+y2=b2 , 已知圓C2將橢圓C1的長軸三等分,且圓C2的面積為π.橢圓C1的下頂點(diǎn)為E,過坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點(diǎn)A,B,直線EA,EB與橢圓C1的另一個(gè)交點(diǎn)分別是點(diǎn)P,M.
(I)求橢圓C1的方程;
(Ⅱ)求△EPM面積最大時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;
(3若,對于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長沙市物價(jià)監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價(jià)格的合理性,對某公司的該產(chǎn)品的銷量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:
定價(jià) | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù): ,
)
(1)根據(jù)散點(diǎn)圖判斷, 與和與哪一對具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價(jià)為多少元/ 時(shí),年銷售額的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線: ,曲線: (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線, 的極坐標(biāo)方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面是邊長為2的正方形, 底面, ,且.
(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.
(Ⅱ)求直線與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某社區(qū)工會對當(dāng)?shù)仄髽I(yè)工人月收入情況進(jìn)行一次抽樣調(diào)查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為( )
A.1000
B.2000
C.3000
D.4000
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com