分析 設(shè)PA、PB分別為點(diǎn)P到平面M、N的距離,過PA、PB作平面α,分別交M、N于AQ、BQ,根據(jù)二面角平面角的定義可知∠AQB是二面角M-a-N的平面角,連PQ,則PQ是P到a的距離,PQ是四邊形PAQB的外接圓的直徑2R,在△PAB中由余弦定理得 求出AB,最后根據(jù)正弦定理可求出PQ,從而求出點(diǎn)P到直線a的距離.
解答 解:設(shè)PA、PB分別為點(diǎn)P到平面M、N的距離,過PA、PB作平面α,分別交M、N于AQ、BQ.
PA⊥平面M,a?平面M,則PA⊥a,同理,有PB⊥a,
∵PA∩PB=P,∴a⊥面PAQB于Q
又AQ、BQ?平面PAQB,∴AQ⊥a,BQ⊥a.
∴∠AQB是二面角M-a-N的平面角,
∴∠AQB=60°
連PQ,則PQ是P到a的距離,在平面圖形PAQB中,有∠PAQ=∠PBQ=90°
∴P、A、Q、B四點(diǎn)共圓,且PQ是四邊形PAQB的外接圓的直徑2R
在△PAB中,∵PA=2,PB=2,∠BPA=180°-60°=120°,
由余弦定理得 AB2=4+4-2×2×2cos120°=12
由正弦定理:PQ=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4
∴點(diǎn)P到直線a的距離為4.
點(diǎn)評(píng) 本題中,通過作二面角的棱的垂面,找到二面角的平面角,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com