分析 (1)欲證PA∥平面EDB,根據(jù)直線與平面平行的判定定理可知只需證PA與平面EDB內(nèi)一直線平行,連接AC,交BD于O,連接EO,根據(jù)中位線定理可知EO∥PA,PA?平面EDB,EO?平面EDB,滿足定理所需條件;
(2)證明AC⊥平面PBD,即可證明平面PAC⊥平面PDB.
解答 證明:(1)設(shè)AC與BD相交于點(diǎn)O,則O為AC的中點(diǎn).
∵E是P的中點(diǎn),∴EO∥PA
又∵EO?平面EDB,PA?平面EDB,
∴PA∥平面EDB;
(2)∵PO⊥平面ABCD,∴PD⊥AC
又∵四邊形ABCD為正方形,∴AC⊥BD
從而AC⊥平面PBD,
∴平面PAC⊥平面PBD.
點(diǎn)評 本題考查直線與平面平行的判定,以及平面與平面垂直的判定,考查空間想象能力,邏輯思維能力,計(jì)算能力,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com