6.如圖所示,有一紙板為△ABC,AB=24cm,BC=32cm,AC=40cm.它所在的平面α與平面γ平行.在α、γ之間有一個與它們平行的平面β上有一個小孔P,α、β相距40cm,β、γ相距為60cm.經(jīng)小孔P,△ABC在墻面上成像為△A′B′C′,求像的面積.

分析 證明AB⊥BC,求出△ABC的面積,利用α、β相距40cm,β、γ相距為60cm,可得面積比,即可求像的面積.

解答 解:∵AB=24cm,BC=32cm,AC=40cm,
∴AB2+BC2=AC2,
∴AB⊥BC,
∴S△ABC=$\frac{1}{2}×24×32$=384,
∵α、β相距40cm,β、γ相距為60cm,
∴$\frac{{S}_{△ABC}}{{S}_{△A′B′C′}}$=$(\frac{40}{60})^{2}$,
∴S△A′B′C′=864cm2

點(diǎn)評 本題考查三角形面積的計算,考查平面與平面平行的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在半徑為r的半圓內(nèi)作一內(nèi)接梯形,使其底為直徑,其他三邊為圓的弦,則梯形面積最大時,其上底長為(  )
A.$\frac{r}{2}$B.$\frac{\sqrt{3}}{2}$rC.$\frac{\sqrt{3}}{3}$rD.r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線過點(diǎn)(1,1),則被圓x2+y2=4截得的弦長最大時的直線方程為x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.證明:當(dāng)n為大于2的整數(shù)時,n5-5n3+4n能被120整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三棱錐P-ABC三條側(cè)棱兩兩垂直,PA=a,PB=b,PC=c,三角形ABC的面積為S,則頂點(diǎn)P到底面的距離是( 。
A.$\frac{abc}{6s}$B.$\frac{abc}{3s}$C.$\frac{abc}{2s}$D.$\frac{abc}{s}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在棱長為1的正方體ABCD-A1B1C1D1中,B1點(diǎn)到平面ACD1的距離為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在60°二面角M-α-N內(nèi)有一點(diǎn)P,P到平面M、平面N的距離均為2,求點(diǎn)P到直線a的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.己知函數(shù)f(x)=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$cosx,x∈R.
(1)證明:f(x)的最小正周期為2π;
(2)若關(guān)于x的方程f(x)-a=0在區(qū)間[$\frac{π}{6}$,π]上有兩個不同的實(shí)數(shù)解,求實(shí)數(shù)a的值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知全集U={1,2,3,4,5,6,7,8},A={x|x2-3x+2=0},B={1,2,3,4,5},B={3,4,5,6,7,8}.
(1)求A∪(B∩C);   
(2)求(∁UB)∪(∁UC)

查看答案和解析>>

同步練習(xí)冊答案