【題目】已知函數(shù)有三個(gè)不同的零點(diǎn), , (其中),則的值為( )
A. B. C. D.
【答案】D
【解析】令f(x)=0,分離變量可得a=,
令g(x)=,
由g′(x)==0,得x=1或x=e.
當(dāng)x∈(0,1)時(shí),g′(x)<0;當(dāng)x∈(1,e)時(shí),g′(x)>0;當(dāng)x∈(e,+∞)時(shí),g′(x)<0.
即g(x)在(0,1),(e,+∞)上為減函數(shù),在(1,e)上為增函數(shù).
∴0<x1<1<x2<e<x3,
a==,令μ=,
則a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,
μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,
對(duì)于μ=,μ′=
則當(dāng)0<x<e時(shí),μ′>0;當(dāng)x>e時(shí),μ′<0.而當(dāng)x>e時(shí),μ恒大于0.
畫(huà)其簡(jiǎn)圖,
不妨設(shè)μ1<μ2,則μ1=,μ2===μ3,
∴(1﹣)2(1﹣)(1﹣)=(1﹣μ1)2(1﹣μ2)(1﹣μ3)
=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是△BCD所在平面外一點(diǎn),M、N為△ABC和△ACD重心,BD=6;
(1)求MN的長(zhǎng);
(2)若A、C的位置發(fā)生變化,MN的位置和長(zhǎng)度會(huì)改變嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(1)若在點(diǎn)處的切線斜率為,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:在時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐廳裝修,需要大塊膠合板張,小塊膠合板張,已知市場(chǎng)出售兩種不同規(guī)格的膠合板。經(jīng)過(guò)測(cè)算, 種規(guī)格的膠合板可同時(shí)截得大塊膠合板張,小塊膠合板張, 種規(guī)格的膠合板可同時(shí)截得大塊膠合板張,小塊膠合板張.已知種規(guī)格膠合板每張元, 種規(guī)格膠合板每張元.分別用表示購(gòu)買(mǎi)兩種不同規(guī)格的膠合板的張數(shù).
(1)用列出滿(mǎn)足條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)根據(jù)施工需求, 兩種不同規(guī)格的膠合板各買(mǎi)多少?gòu)埢ㄙM(fèi)資金最少?并求出最少資金數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一張紙沿直線l對(duì)折一次后,點(diǎn)A(0,4)與點(diǎn)B(8,0)重疊,點(diǎn)C(6,8)與點(diǎn)D(m,n)重疊.
(1)求直線l的方程;
(2)求m+n的值;
(3)直線l上是否存在一點(diǎn)P,使得||PB|﹣|PC||存在最大值,如果存在,請(qǐng)求出最大值,以及此時(shí)點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ(φ>0)個(gè)單位,再將圖象上每一點(diǎn)橫坐標(biāo)縮短到原來(lái)的 倍,所得圖象關(guān)于直線x= 對(duì)稱(chēng),則φ的最小正值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)m,使得對(duì)于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),則稱(chēng)f(x)為M上的m度低調(diào)函數(shù).如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x﹣a2|﹣a2 , 且f(x)為R上的5度低調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的序號(hào)是 . ①y=﹣2cos( π﹣2x)是奇函數(shù);
②若α,β是第一象限角,且α>β,則sinα>sinβ;
③x=﹣ 是函數(shù)y=3sin(2x﹣ )的一條對(duì)稱(chēng)軸;
④函數(shù)y=sin( ﹣2x)的單調(diào)減區(qū)間是[kπ﹣ ,kπ+ ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為C的圓過(guò)點(diǎn)A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)M(2,8)作圓的切線,求切線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com