已知函數(shù) f(x)=ax+lnx,其中a為常數(shù),設(shè)e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=-1時(shí),求f(x)的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-3,求a的值;
(3)若f(x)在x∈(1,e)有極值.函數(shù)g(x)=x3-x-2,證明:?x1∈(1,e),?x0∈(1,e),使得g(x0)=f(x1)成立.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,變化的快慢與變化率,利用導(dǎo)數(shù)研究函數(shù)的極值
專(zhuān)題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)在定義域(0,+∞)內(nèi)對(duì)函數(shù)f(x)求導(dǎo),求其極大值,若是唯一極值點(diǎn),則極大值即為最大值.
(2)在定義域(0,+∞)內(nèi)對(duì)函數(shù)f(x)求導(dǎo),對(duì)a進(jìn)行分類(lèi)討論并判斷其單調(diào)性,根據(jù)f(x)在區(qū)間(0,e]上的單調(diào)性求其最大值,并判斷其最大值是否為-3,若是就可求出相應(yīng)的最大值.
(3)由:?x1∈(1,e),?x0∈(1,e),使得g(x0)=f(x1)f(x1)即研究:f(x)的值域是g(x)的值域的子集,所以分別求得兩函數(shù)的值域即可.
解答: (1)解:易知f(x)定義域?yàn)椋?,+∞),
當(dāng)a=-1時(shí),f(x)=-x+lnx,f′(x)=
1-x
x
,令f′(x)=0,得x=1.
當(dāng)0<x<1時(shí),f′(x)>0;當(dāng)x>1時(shí),f′(x)<0.
∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù).
f(x)max=f(1)=-1.
∴函數(shù)f(x)在(0,+∞)上的最大值為-1.
(2)解:∵f′(x)=a+
1
x
,x∈(0,e],
1
x
∈[
1
e
,+∞)
①若a≥-
1
e
,則f′(x)≥0,從而f(x)在(0,e]上增函數(shù),
∴f(x)max=f(e)=ae+1≥0,不合題意.
②若a<
1
e
,則由f′(x)>0得a+
1
x
>0,即0<x<-
1
a

由f′(x)<0得a+
1
x
<0,即-
1
a
<x≤e.
從而f(x)在(0,-
1
a
)上增函數(shù),在(-
1
a
,e)為減函數(shù)
∴f(x)max=f(-
1
a
)=-1+ln(-
1
a

令-1+ln(-
1
a
)=-3,則ln(-
1
a
)=-2
∴-
1
a
=e-2,即a=-e2.∵-e2<-
1
e
,∴a=-e2為所求.
(3)證明:由g(x)=x3-x-2求導(dǎo)可得g'(x)=3x2-1
令g'(x)=3x2-1=0,解得x=±
3
3

令g'(x)=3x2-1>0,解得x<-
3
3
或x>
3
3

又∵x∈(1,e)⊆(
3
3
,+∞)
∴g(x)在(1,e)上為單調(diào)遞增函數(shù)
∵g(1)=-2,g(e)=e3-e-2
∴g(x)在x∈(1,e)的值域?yàn)椋?2,e3-e-2)
∵e3-e-2>-1+ln(-
1
a
),-2<ae+1,-2<a
∴(ae+1,-1+ln(-
1
a
))⊆(-2,e3-e-2),(a,-1+ln(-
1
a
))⊆(-2,e3-e-2),
∴?x1∈(1,e),?x0∈(1,e),使得g(x0)=f(x1)成立.
點(diǎn)評(píng):本題先通過(guò)對(duì)函數(shù)求導(dǎo),求其極值,進(jìn)而在求其最值及值域,用到分類(lèi)討論的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,P為C上一點(diǎn),若PF1⊥PF2,S△PF1F2=
a2
3
,則C的離心率為( 。
A、
3
3
B、
2
3
C、
5
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)據(jù)5,7,7,8,10,11的方差、標(biāo)準(zhǔn)差分別為( 。
A、8、2
2
B、6、
6
C、4、2
D、2、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若函數(shù)f(x)的圖象經(jīng)過(guò)變換T后所得圖象對(duì)應(yīng)的函數(shù)與f(x)的值域相同,則稱變換T是f(x)的同值變換.下面給出了四個(gè)函數(shù)與對(duì)應(yīng)的變換:
(1)f(x)=(x-1)2,T1將函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱;
(2)f(x)=2x-1-1,T2將函數(shù)f(x)的圖象關(guān)于x軸對(duì)稱;
(3)f(x)=
x
x+1
,T3將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱;
(4)f(x)=sin(x+
π
3
),T4將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱.
其中是f(x)的同值變換的有(  )個(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c(x∈[-1,2]),且函數(shù)f(x)在x=1和x=-
2
3
處都取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知角α是第二象限角,且sinα=
1
3
,求cos(π+α)及tanα的值;
(2)已知tanβ=
1
2
,①求
sinβ+2cosβ
cosβ-3sinβ
的值;②求sin2β-3sinβcosβ+4cos2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+clnx(其中a,b,c為實(shí)常數(shù))
(1)當(dāng)b=0,c=1時(shí),討論f(x)的單調(diào)區(qū)間;
(2)曲線y=f(x)(其中a>0)在點(diǎn)(1,f(1))處的切線方程為y=3x-3
①若函數(shù)f(x)無(wú)極值點(diǎn)且方程f′(x)=0有解,求a,b,c的值;
②若函數(shù)f(x)有兩個(gè)極值點(diǎn),證明f(x)的極值點(diǎn)小于-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=1處取得極值,對(duì)?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)x>y>e-1時(shí),求證:ex-y
ln(x+1)
ln(y+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案