【題目】已知函數,且.
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數的單調區(qū)間;
(Ⅲ)若函數有最值,寫出的取值范圍.(只需寫出結論)
【答案】(1) ;(2)詳見解析;(3)
【解析】試題分析:(Ⅰ)求導,利用導數的幾何意義進行求解;(Ⅱ)求導,利用分類討論思想討論導函數的符號變換,進而得到函數的單調區(qū)間;(Ⅲ)根據前一問直接給出答案即可.
試題解析:(Ⅰ)當時,由題設知.
因為,
所以, .
所以在處的切線方程為.
(Ⅱ)因為,所以 .
當時,定義域為 .
且
故的單調遞減區(qū)間為 ……5分
當時,定義域為. 當變化時, , :
x | |||||
— | 0 | + | 0 | — | |
單調減 | 極小值 | 單調增 | 極大值 | 單調減 |
故的單調遞減區(qū)間為, ,
單調遞增區(qū)間為.
綜上所述,
當時, 的單調遞減區(qū)間為;
當時,故的單調遞減區(qū)間為, ,
單調遞增區(qū)間為.
(Ⅲ)
科目:高中數學 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個動點,∠CPB=α,∠DPA=β. (Ⅰ)當 最小時,求tan∠DPC的值;
(Ⅱ)當∠DPC=β時,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+1=0,O為坐標原點,動點P在圓C外,過P作圓C的切線,設切點為M.
(1)若點P運動到(1,3)處,求此時切線l的方程;
(2)求滿足條件|PM|=|PO|的點P的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 .
(1)證明f(x)在(0,+∞)上單調遞增;
(2)是否存在實數a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x)是定義在(0,+∞)上單調函數,且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 的展開式的系數和比(3x﹣1)n的展開式的系數和大992,求(2x﹣ )2n的展開式中:
(1)二項式系數最大的項;
(2)系數的絕對值最大的項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四棱錐中,已知異面直線與所成的角為,給出下面三個命題:
:若,則此四棱錐的側面積為;
:若分別為的中點,則平面;
:若都在球的表面上,則球的表面積是四邊形面積的倍.
在下列命題中,為真命題的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com