已知實(shí)系數(shù)方程x2+ax+1=0的一個(gè)實(shí)根在區(qū)間(1,2)內(nèi),則a的取值范圍是
 
考點(diǎn):一元二次方程的根的分布與系數(shù)的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)函數(shù)f(x)=x2+ax+1,利用根與系數(shù)之間的關(guān)系,建立條件關(guān)系即可得到結(jié)論.
解答: 解:設(shè)f(x)=x2+ax+1,
∵f(0)=1>0,方程x2+ax+1=0的一個(gè)實(shí)根在區(qū)間(1,2)內(nèi),
f(1)>0
f(2)<0
f(1)<0
f(2)>0
,
2+a>0
5+2a<0
①或
2+a<0
5+2a>0
②,
由①得無解,由②得-
5
2
<a<-2,
故答案為:(-
5
2
,-2).
點(diǎn)評:本題主要考查二次函數(shù)和二次方程之間的關(guān)系,將方程轉(zhuǎn)化為函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長為2的正三角形,記△OAB位于直線x=t(0<t≤2)左側(cè)的圖形的面積為f(t),則
(Ⅰ)函數(shù)f(t)的解析式為
 

(Ⅱ)函數(shù)y=f(t)的圖象在點(diǎn)P(t0,f(t0))處的切線的斜率為
2
3
3
,則t0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正方體ABCD-A1B1C1D1的棱長為1,則三棱錐A-BDA1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個(gè)平面向量
AB
,
AC
,
BC
滿足|
AB
|=1,|
AC
|=2,|
BC
|=
3
,點(diǎn)E是BC的中點(diǎn),若點(diǎn)D滿足
BD
=2
AE
,則
AC
AD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

球O為邊長為2的正方體ABCD-A1B1C1D1的內(nèi)切球,P為球O的球面上動(dòng)點(diǎn),M為B1C1中點(diǎn),DP⊥BM,則點(diǎn)P的軌跡周長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某班50名學(xué)生的一次數(shù)學(xué)測試成績進(jìn)行調(diào)查,發(fā)現(xiàn)其成績都在90到150之間,頻率分布直方圖如圖所示.
(1)直方圖中x的值為
 
;
(2)在這些學(xué)生中,成績在[110,150)內(nèi)的學(xué)生人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆骰子投擲兩次分別得到點(diǎn)數(shù)a,b,則直線ax-by=0與圓(x-2)2+y2=2沒有公共點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項(xiàng)am,an,使得aman=16a12,則
1
m
+
4
n
的最小值為(  )
A、
3
2
B、
5
3
C、
25
6
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
3x-y≥2
x-2y≤-1
2x+y≤8
,則
x
y
的最小值為( 。
A、
1
2
B、
2
3
C、1
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案