9.若tanα=$\frac{3}{4}$,α為第三象限角,則sinα=-$\frac{3}{5}$;cotα=$\frac{4}{3}$.

分析 根據(jù)題意,由同角三角函數(shù)基本關(guān)系式可得$\frac{sinα}{cosα}$=$\frac{3}{4}$和sin2α+cos2α=1,解可得sinα=±$\frac{3}{5}$,又由α為第三象限角,可得sinα符號為負(fù),即可得sinα的值;進(jìn)而由cotα=$\frac{1}{tanα}$,可得cotα的值.

解答 解:根據(jù)題意,由tanα=$\frac{3}{4}$,可得$\frac{sinα}{cosα}$=$\frac{3}{4}$,
又由sin2α+cos2α=1,
解可得:sinα=±$\frac{3}{5}$,
又由α為第三象限角,則sinα=-$\frac{3}{5}$;
cotα=$\frac{1}{tanα}$=$\frac{4}{3}$,
故答案為:-$\frac{3}{5}$,$\frac{4}{3}$.

點評 本題考查同角三角函數(shù)基本關(guān)系式的運用,注意結(jié)合角所在的象限分析三角函數(shù)的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)有兩個命題,命題p:關(guān)于x的不等式(x-2)$\sqrt{{x^2}-3x+2}$≥0的解集為{x|x≥2},命題q:若函數(shù)y=kx2-kx-1的值恒小于0,則-4<k<0,那么( 。
A.“¬q”為假命題B.“p且¬q”為真命題C.“¬p”為真命題D.“¬p或q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$(ax+a-x),(a>0且a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù)f(x)的圖象過點(2,$\frac{41}{9}$),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若圓心在x軸上,半徑為$\sqrt{5}$的圓C位于y軸左側(cè),且被直線x+2y=0截得的弦長為4,則圓C的方程是( 。
A.${(x-\sqrt{5})^2}+{y^2}=5$B.${(x+\sqrt{5})^2}+{y^2}=5$C.(x-5)2+y2=5D.(x+5)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C:16x2-9y2=144,則C的離心率為( 。
A.$\frac{25}{16}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{25}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在空間四邊形ABCD中,AC,BD為其對角線,E,F(xiàn),G,H分別為AC,BC,BD,AD上的點,若四邊形EFGH為平行四邊形,求證:AB∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖中,直線m,n,平面α、β,直線m與平面α之間的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)點A為拋物線y2=4x上一點B(1,0),且AB=1,則A的橫坐標(biāo)的值( 。
A.-2B.0C.-2或0D.-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(sinx)=cos3x,x∈[-90°,90°],則f(cos10°)的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案