已知數(shù)列{an}滿足a1=1,
1
an+1
=
2+
1
a
2
n
,an>0,求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專(zhuān)題:計(jì)算題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:
1
an+1
=
2+
1
a
2
n
,可得(
1
an+1
)2-
1
an2
=2,從而{
1
an2
}組成以1為首項(xiàng),2為公差的等差數(shù)列,由此可求數(shù)列{an}的通項(xiàng)公式.
解答: 解:∵
1
an+1
=
2+
1
a
2
n
,
(
1
an+1
)2-
1
an2
=2,
∵a1=1,
∴{
1
an2
}組成以1為首項(xiàng),2為公差的等差數(shù)列,
1
an2
=2n-1,
∵an>0,
∴an=
1
2n-1
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列{an}的通項(xiàng)公式,確定{
1
an2
}組成以1為首項(xiàng),2為公差的等差數(shù)列是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
i
3
+3i
=
 

(2)
i2+i3+i-1
2i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=lnx+ax2+bx.(a,b∈R)
(1)若關(guān)于x的不等式1+lnx>g(x)的解集為(-∞,1)∪(2,+∞),求b-a的值;
(2)求f(x)=g(x)-bx的單調(diào)區(qū)間;
(3)若a=b=1,y=g(x)的圖象上是否存在兩點(diǎn)P(x1,y1),Q(x2,y2),(其中x1≥e2x2)使得PQ的斜率等于曲線在其上一點(diǎn)C(點(diǎn)C的橫坐標(biāo)等于PQ中點(diǎn)的橫坐標(biāo))處的切線的斜率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=a-bcosx的最大值為
3
2
,最小值為-
1
2
,求實(shí)數(shù)y=-4sinax的最大值和最小值及周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tanα=-
1
3
,cosβ=
5
5
,α,β∈(0,π),求:
(1)tan(α+β);
(2)求
2
sin(
π
6
-α)+cos(
π
6
+β)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3-b的圖象與直線y=3x+2相切于點(diǎn)A(1,f(1))
(1)求a、b的值;
(2)若函數(shù)f(x)在點(diǎn)B(-1,f(-1))的切線方程為l,直線m平行l(wèi),且m與曲線g(x)=x3相切.求直線l和m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=∫
 
x
-a
(12t+4a)dt,F(xiàn)(a)=∫
 
1
0
[f(x)+3a2]dx,求函數(shù)F(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知1≤a≤2,-1≤b≤3,則2a+b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高中共有學(xué)生1000名,其中高一年級(jí)共有學(xué)生380人,高二年級(jí)男生有180人.如果在全校學(xué)生中抽取1名學(xué)生,抽到高二年級(jí)女生的概率為0.19,現(xiàn)采用分層抽樣(按年級(jí)分層)在全校抽取100人,則應(yīng)在高三年級(jí)中抽取的人數(shù)等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案