4.已知關(guān)于x的不等式$\frac{2x-a}{3}$>$\frac{a}{2}$-1與$\frac{x}{a}$<5的解相同,則a=-$\frac{2}{5}$.

分析 由題意可得$\frac{x}{a}$<5的解集為{x|x>$\frac{5a-6}{4}$ },再根據(jù) $\left\{\begin{array}{l}{a<0}\\{5a=\frac{5a-6}{4}}\end{array}\right.$,求得a的值.

解答 解:由不等式$\frac{2x-a}{3}$>$\frac{a}{2}$-1,可得x>$\frac{5a-6}{4}$.
再根據(jù)不等式$\frac{2x-a}{3}$>$\frac{a}{2}$-1 與$\frac{x}{a}$<5的解相同,可得$\frac{x}{a}$<5的解集為{x|x>$\frac{5a-6}{4}$ }.
∴$\left\{\begin{array}{l}{a<0}\\{5a=\frac{5a-6}{4}}\end{array}\right.$,求得a=-$\frac{2}{5}$,
故答案為:-$\frac{2}{5}$.

點(diǎn)評(píng) 本題主要考查分式不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖△OAB,其中$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,M,N分別是邊OA,OB上的點(diǎn),且$\overrightarrow{OM}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{ON}$=$\frac{1}{2}$$\overrightarrow$,設(shè)$\overrightarrow{AN}$與$\overrightarrow{BM}$相交于P,用向量$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若用C、R、I分別表示復(fù)數(shù)集、實(shí)數(shù)集、純虛數(shù)集,則有(  )
A.C=R∪IB.R∩I={0}C..∁CR=C∩ID.R∩I=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.解方程組:
$\left\{\begin{array}{l}{\frac{10}{x+y}+\frac{3}{x-y}=-5}\\{\frac{15}{x+y}-\frac{2}{x-y}=-1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{7x-3}{2x+2}\\ x∈(\frac{1}{2},1]}\\{-\frac{1}{3}x+\frac{1}{6}\\ x∈[0,\frac{1}{2}]}\end{array}\right.$,函數(shù)g(x)=asin($\frac{π}{6}$x)-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,$\frac{4}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡(jiǎn):$\root{3}{{a}^{\frac{1}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}•\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}•\sqrt{{a}^{-1}}}$(a>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知橢圓C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1.設(shè)F為橢圓C的左焦點(diǎn),T為直線x=-3上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.則$\frac{|TF|}{|PQ|}$最小值為(  )
A.$\frac{4\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.${∫}_{1}^{a}$(3x+$\frac{1}{x}$)dx=$\frac{9}{2}$+ln2(a>1),則a=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案