【題目】如圖,在以為頂點(diǎn)的五面體中,OAB的中點(diǎn),

平面 , , ,

1)在圖中過(guò)點(diǎn)O作平面,使得∥平面,并說(shuō)明理由;

(2)求直線DE與平面CBE所成角的正切值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)在BE上取點(diǎn)F,使得,在BC上取點(diǎn)H,使,平面OFH即為所求的平面取BE的中點(diǎn)G,連接AG,再證明∥平面即可;(2)先證明與平面所成的角,根據(jù)與平面所成的角等于與平面所成的角,利用直角三角形性質(zhì)可得結(jié)果.

試題解析:(1)如圖,在BE上取點(diǎn)F,使得,在BC上取點(diǎn)H,使,連接OF,F(xiàn)H,OH,則平面OFH即為所求的平面

理由如下:

BE的中點(diǎn)G,連接AG,

, 中點(diǎn),

是平行四邊形,

中, 中點(diǎn), 中點(diǎn),

所以是中位線, ,

平面, 平面

平面

中, ,

平面, 平面,

平面,

, 平面 平面,

平面平面,即平面

(2)連接,因?yàn)?/span>平面

,所以平面

平面

與平面所成的角,

,

與平面所成的角等于與平面所成的角

中, ,

中,

中,

即直線DE與平面CBE所成角的正切值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的方程為.

寫(xiě)出直線的普通方程和圓的直角坐標(biāo)方程;

若點(diǎn)的直角坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空間中任意放置的棱長(zhǎng)為2的正四面體.下列命題正確的是_________.(寫(xiě)出所有正確的命題的編號(hào))

①正四面體的主視圖面積可能是;

②正四面體的主視圖面積可能是

③正四面體的主視圖面積可能是;

④正四面體的主視圖面積可能是2

⑤正四面體的主視圖面積可能是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車(chē)廠生產(chǎn)三類(lèi)轎車(chē),每類(lèi)轎車(chē)均有舒適型和標(biāo)準(zhǔn)型兩類(lèi)型號(hào),某月的產(chǎn)量如下表:(單位:輛). 按類(lèi)用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車(chē)中抽取50輛,其中有類(lèi)轎車(chē)10輛.

(1)求的值;

(2)用分層抽樣的方法在類(lèi)轎車(chē)中抽取一個(gè)容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車(chē)的概率;

(3)用隨機(jī)抽樣的方法從類(lèi)舒適型轎車(chē)中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車(chē)的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的三棱錐中,底面分別是的中點(diǎn).

1求證:平面

2,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),對(duì)于函數(shù),稱向量為函數(shù)的伴隨向量,同時(shí)稱函數(shù)為向量的伴隨函數(shù).

(Ⅰ)設(shè)函數(shù),試求的伴隨向量;

(Ⅱ)記向量的伴隨函數(shù)為,求當(dāng)時(shí)的值;

由(Ⅰ)中函數(shù)的圖像縱坐標(biāo)不變橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,再把整個(gè)圖像向右平移個(gè)單位長(zhǎng)度得到的圖像已知 ,問(wèn)在的圖像上是否存在一點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且直線是函數(shù)的一條切線.

(1)求的值;

(2)對(duì)任意的,都存在,使得,求的取值范圍;

(3)已知方程有兩個(gè)根,若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案