精英家教網 > 高中數學 > 題目詳情
9.在△ABC中,a=2,$B=\frac{π}{3}$,△ABC的面積等于$\frac{\sqrt{3}}{2}$,則b等于( 。
A.$\frac{\sqrt{3}}{2}$B.1C.$\sqrt{3}$D.2

分析 由已知利用三角形面積公式可求c,進而利用余弦定理可求b的值.

解答 解:∵a=2,$B=\frac{π}{3}$,△ABC的面積等于$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$acsinB=$\frac{1}{2}×$2×$c×\frac{\sqrt{3}}{2}$,
∴解得:c=1,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{4+1-2×2×1×\frac{1}{2}}$=$\sqrt{3}$.
故選:C.

點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

19.已知直線2x+y-2=0經過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點與右焦點,則橢圓的方程為( 。
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.自主招生,是高校選拔錄取工作改革的重要環(huán)節(jié),通過高考自主招生筆試和面試之后,可以得到相應的高考降分政策;某高中高一學生共有1000人,其中城填初中畢業(yè)生750名(稱為“城填生“),農村初中畢業(yè)生250人(稱為“農村生“);為了摸清學生是否愿意參加自主招生,以便安排自主招生培訓,擬采用分層抽樣的方法抽取100名學生進行調查;
(1)試完成下列2×2聯表,并分析是否有95%以上的把握說“是否愿意參加自主招生“與生源有關.
愿意參加不愿意參加合計
城填生502575
農村生101525
合計6040100
(2)現對愿意參加自主招生的同學組織摸底考試,考試題共有5道題,每題20分,對于這5道題,考生“高富帥”完全會答的有3道,不完全會的有2道,不完全會的每道題她得分S的概率滿足:SKIPIF 1<0,假設解答各題之間沒有影響.
①對于一道不完全會的題,求“高富帥”得分的均值E(s);
②試求“高富帥”在本次摸底考試中總得分的數學期望.
參考數據:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.如圖,為測量塔高AB,選取與塔底B在同一水平面內的兩點C、D,在C、D兩點處測得塔頂A的仰角分別為45°,30°,又測得∠CBD=30°,CD=50米,則塔高AB=( 。
A.50米B.25$\sqrt{3}$米C.25米D.50$\sqrt{3}$米

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知數列{an}的前n項和Sn=n2-n(n∈N*).正項等比數列{bn}的首項b1=1,且3a2是b2,b3的等差中項.
(I)求數列{an},{bn}的通項公式;
(II)若cn=an•bn,求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知直線$l:\left\{\begin{array}{l}x=2+t\\ y=-1-t\end{array}\right.$(t是參數),曲線C的極坐標方程是ρ=1,那么直線l與曲線C的公共點的個數是2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.“數列{an}為等比數列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.函數$f(x)=\frac{sinx}{x}$的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.如圖,平行四邊形ABCD的兩條對角線相交于點M,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{MD}$=( 。
A.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

同步練習冊答案