【題目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,ABAC,且AA1=AB=AC,則異面直線AB1BC1所成角為_____

【答案】

【解析】連結A1B,

AA1⊥面ABC,平面A1B1C1∥面ABC,

AA1⊥平面A1B1C1

A1C1平面A1B1C1,AA1A1C1

∵△ABCA1B1C1是全等三角形,ABAC,

A1B1A1C1

A1B1∩AA1=A1,A1C1⊥平面AA1B1B,

又∵AB1平面AA1B1BA1C1AB1,

∵矩形AA1B1B中,AA1=AB,

∴四邊形AA1B1B為正方形,可得A1BAB1

A1B∩A1C1=A1AB1⊥平面A1BC1,

結合BC1平面A1BC1,可得AB1BC1,即異面直線AB1BC1所成角為

故答案為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:x2=2y的焦點為F,過拋物線上一點M作拋物線C的切線l,l交y軸于點N.
(1)判斷△MFN的形狀;
(2)若A,B兩點在拋物線C上,點D(1,1)滿足 + = ,若拋物線C上存在異于A,B的點E,使得經過A,B,E三點的圓與拋物線在點E處的有相同的切線,求點E的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數(shù),且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上、下焦點分別為,上焦點到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=

(I)若P是橢圓C上任意一點,求的取值范圍;

(II)設過橢圓C的上頂點A的直線與橢圓交于點B(B不在y軸上),垂直于的直線與交于點M,與軸交于點H,若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

(1)求函數(shù)的最小值;

(2)對一切, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小萌大學畢業(yè)后,家里給了她10萬元,她想辦一個“萌萌”加工廠,根據市場調研,她得出了一組毛利潤(單位:萬元)與投入成本(單位:萬元)的數(shù)據如下:

投入成本

0.5

1

2

3

4

5

6

毛利潤

1.06

1.25

2

3.25

5

7.25

9.98

為了預測不同投入成本情況下的利潤,她想在兩個模型,中選一個進行預測.

(1)根據投入成本2萬元和4萬元的兩組數(shù)據分別求出兩個模型的函數(shù)解析式,請你根據給定數(shù)據選出一個較好的函數(shù)模型進行預測(不必說明理由),并預測她投入8萬元時的毛利潤;

(2)若小萌準備最少投入2萬元開辦加工廠,請預測加工廠毛利潤率的最大值,并說明理由.(

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12)如圖所示,函數(shù)的一段圖象過點

1)求函數(shù)的表達式;

2)將函數(shù)的圖象向右平移個單位,得函數(shù)的圖象,求函數(shù)的最大值,并求此時自變量的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

討論的單調區(qū)間;

時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列幾個命題

①奇函數(shù)的圖象一定通過原點

②函數(shù)是偶函數(shù),但不是奇函數(shù)

③函數(shù)f(x)=ax﹣1+3的圖象一定過定點P,則P點的坐標是(1,4)

④若f(x+1)為偶函數(shù),則有f(x+1)=f(﹣x﹣1)

⑤若函數(shù)在R上的增函數(shù),則實數(shù)a的取值范圍為[4, 8)

其中正確的命題序號為________

查看答案和解析>>

同步練習冊答案