A. | $\frac{3\sqrt{2}-\sqrt{3}}{6}$ | B. | $\frac{3\sqrt{2}+\sqrt{3}}{6}$ | C. | $\frac{-3\sqrt{2}+\sqrt{3}}{6}$ | D. | $\frac{-3\sqrt{2}-\sqrt{3}}{6}$ |
分析 由已知可得:2θ-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],結(jié)合二倍角公式和和差角公式,可已知化為sin(2θ-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,進(jìn)而利用同角三角函數(shù)的基本關(guān)系公式,求出cos(2θ-$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,代入cos2θ=cos[(2θ-$\frac{π}{6}$)+$\frac{π}{6}$]可得答案.
解答 解:∵θ∈[-$\frac{π}{6}$,$\frac{π}{3}$],
∴2θ-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],
又∵$\sqrt{3}$sinθcosθ-$\frac{1}{2}$cos2θ=$\frac{\sqrt{3}}{2}$sin2θ-$\frac{1}{2}$cos2θ=sin(2θ-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
∴cos(2θ-$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,
∴cos2θ=cos[(2θ-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(2θ-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(2θ-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{6}}{3}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{3}$×$\frac{1}{2}$=$\frac{3\sqrt{2}-\sqrt{3}}{6}$,
故選:A
點(diǎn)評 本題考查的知識點(diǎn)是二倍角公式和和差角公式,同角三角函數(shù)的基本關(guān)系公式,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的圖象關(guān)于直線x=1對稱 | B. | f(x)為奇函數(shù) | ||
C. | f(x)是周期為2的函數(shù) | D. | f(x)為偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com