【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.
【答案】(1)或.(2)
【解析】
(1)代入解析式表示出方程并化簡(jiǎn),對(duì)二次項(xiàng)系數(shù)分類(lèi)討論與,即可確定只有一個(gè)元素時(shí)的值;
(2)由對(duì)數(shù)函數(shù)性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,由題意代入可得,化簡(jiǎn)不等式并分離參數(shù)后構(gòu)造函數(shù),利用函數(shù)的單調(diào)性求出構(gòu)造函數(shù)的最值,即可求得的取值范圍.
(1)關(guān)于的方程,
代入可得,
由對(duì)數(shù)運(yùn)算性質(zhì)可得,化簡(jiǎn)可得,
當(dāng)時(shí),代入可得,解得,代入經(jīng)檢驗(yàn)可知,
滿(mǎn)足關(guān)于的方程的解集中恰有一個(gè)元素,
當(dāng)時(shí),則,解得,
再代入方程可解得,代入經(jīng)檢驗(yàn)可知,
滿(mǎn)足關(guān)于的方程的解集中恰有一個(gè)元素,
綜上可知,或.
(2)若,對(duì)任意,函數(shù)在區(qū)間上單調(diào)遞減,
由題意可知,
化簡(jiǎn)可得,即,所以,
令
,
當(dāng)時(shí),,當(dāng)時(shí),
,設(shè),
設(shè),
,
,
所以在是增函數(shù),,
,
則的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)在上單調(diào)遞增,又函數(shù).
(1)求實(shí)數(shù)的值,并說(shuō)明函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,
PB=.
(Ⅰ)求證:BC⊥PB;
(Ⅱ)求二面角P一CD一A的余弦值;
(Ⅲ)若點(diǎn)E在棱PA上,且BE//平面PCD,求線(xiàn)段BE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓: 上, 是橢圓的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱(chēng),直線(xiàn), 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線(xiàn)截得的弦長(zhǎng)是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與它到直線(xiàn)的距離相等.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)動(dòng)直線(xiàn)與曲線(xiàn)相切于點(diǎn),與直線(xiàn)相交于點(diǎn).
證明:以為直徑的圓恒過(guò)軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x-3)2+(y-4)2=4.
(Ⅰ)過(guò)原點(diǎn)O(0,0)作圓C的切線(xiàn),切點(diǎn)分別為H、K,求直線(xiàn)HK的方程;
(Ⅱ)設(shè)定點(diǎn)M(-3,8),動(dòng)點(diǎn)N在圓C上運(yùn)動(dòng),以CM,CN為領(lǐng)邊作平行四邊形MCNP,求點(diǎn)P的軌跡方程;
(Ⅲ)平面上有兩點(diǎn)A(1,0),B(-1,0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求|AP|2+|BP|2的最小值;
(Ⅳ)若Q是x軸上的動(dòng)點(diǎn),QR,QS分別切圓C于R,S兩點(diǎn).試問(wèn):直線(xiàn)RS是否恒過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為2,P為BC的中點(diǎn),Q為線(xiàn)段上的動(dòng)點(diǎn),過(guò)點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是______(寫(xiě)出所有正確命題的編號(hào)).
①當(dāng)時(shí),S為四邊形;②當(dāng)時(shí),S為等腰梯形;③當(dāng)時(shí),S與的交點(diǎn)R滿(mǎn)足;④當(dāng)時(shí),S為五邊形;⑤當(dāng)時(shí),S的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,圓與圓的公切線(xiàn)的條數(shù)的可能取值共有( 。
A. 2種B. 3種C. 4種D. 5種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點(diǎn)在橢圓上.
求橢圓的方程;
已知與為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com