已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,求A(2,
4
)
到這條直線的距離.
考點(diǎn):點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,點(diǎn)到直線的距離公式
專題:直線與圓
分析:把直線的極坐標(biāo)方程化為直角坐標(biāo)方程,再求出點(diǎn)A的直角坐標(biāo),利用點(diǎn)到直線的距離公式求得點(diǎn)A到直線的距離.
解答: 解:直線的極坐標(biāo)方程 ρsin(θ+
π
4
)=
2
2
,即
2
2
ρsinθ
+
2
2
ρcosθ
=
2
2
,即 x+y=1.
A(2,
4
)
 即A(
2
,-
2
 ),
故點(diǎn)A到直線的距離為d=
|
2
-
2
-1|
2
=
2
2
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2cos(
π
2
-x)cosx-
3
cos2x
,x∈R,
(1)求f(
π
6
)
的值;
(2)當(dāng)x∈[0,
π
2
]
時(shí),求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將直線2x-y+λ=0沿x軸向左平移一個(gè)單位,所得直線與曲線C:
x=-1+
5
cosθ
y=2+
5
sinθ
(θ為參數(shù))相切,則實(shí)數(shù)λ的值為( 。
A、-7或3B、-2或8
C、0或10D、1或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以a表示.
(Ⅰ)若甲、乙兩個(gè)小組的數(shù)學(xué)平均成績相同,求a的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率;
(Ⅲ)當(dāng)a=2時(shí),分別從甲、乙兩組同學(xué)中各隨機(jī)選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績之差的絕對(duì)值不超過2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)域D:(x-1)2+y2≤4內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到點(diǎn)A(1,2)的距離大于2的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+x2-ax(a∈R,且a≠0).如果存在實(shí)數(shù)a∈(-∞,-1],使函數(shù)g(x)=f(x)+f′(x),x∈[-1,b](b>-1)在x=-1處取得最小值,則實(shí)數(shù)b的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù):
x 3 4 5 6
y 2.5 3 m 4.5
若根據(jù)上表提供的數(shù)據(jù)用最小二乘法可求得y對(duì)x的回歸直線方程是 
y
=0.7x+0.35,則表中m的值為( 。
A、4B、4.5C、3D、3.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinx(cosx-sinx),其中x∈R,
(1)求函數(shù)f(x)的最小正周期,并指出函數(shù)y=sin2x的圖象如何變換成y=f(x)的圖象;(要求變換的先后順序)
(2)在△ABC中角A,B,C對(duì)應(yīng)邊分別為a,b,c,f(A)=0,b=4,S△ABC=6,求a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A為y軸上異于原點(diǎn)O的定點(diǎn),過動(dòng)點(diǎn)P作x軸的垂線交x軸于點(diǎn)B,動(dòng)點(diǎn)P滿足|
PA
+
PO
|=2|
PB
|
,則點(diǎn)P的軌跡為( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

同步練習(xí)冊(cè)答案