分析 (1)由已知分θ的終邊所在象限在終邊上任取一點(diǎn),利用三角函數(shù)的定義求出θ的正弦和余弦值得答案;
(2)直接分n為偶數(shù)和奇數(shù)化簡求值.
解答 解:(1)∵角θ的終邊在直線y=-2x上,∴tanθ=-2,
在直線y=-2x上取一點(diǎn)A(-1,2),則OA=$\sqrt{5}$,
∴sinθ=$\frac{2\sqrt{5}}{5}$,cos$θ=-\frac{\sqrt{5}}{5}$,則5sinθ-$\frac{2}{cosθ}$=$5×\frac{2\sqrt{5}}{5}-\frac{2}{-\frac{\sqrt{5}}{5}}$=$4\sqrt{5}$.
在直線y=-2x上取一點(diǎn)B(1,-2),則OA=$\sqrt{5}$,
∴sinθ=-$\frac{2\sqrt{5}}{5}$,cosθ=$\frac{\sqrt{5}}{5}$,則5sinθ-$\frac{2}{cosθ}$=$5×(-\frac{2\sqrt{5}}{5})-\frac{2}{\frac{\sqrt{5}}{5}}=-4\sqrt{5}$;
(2)當(dāng)n為偶數(shù)時,$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)•cos(α-nπ)}$=$\frac{sinα+sinα}{sinαcosα}=\frac{2}{cosα}$.
當(dāng)n為奇數(shù)時,$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)•cos(α-nπ)}$=$\frac{-sinα-sinα}{-sinα•(-cosα)}=-\frac{2}{cosα}$.
點(diǎn)評 本題考查三角函數(shù)的化簡與求值,考查了三角函數(shù)的定義,訓(xùn)練了利用誘導(dǎo)公式化簡求值,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com