【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求證:平面AEC⊥平面ABE;
(2)點(diǎn)F在BE上.若DE∥平面ACF,求的值.
【答案】(1)見解析 (2)
【解析】
(1)證明 因?yàn)?/span>ABCD為矩形,所以AB⊥BC.
因?yàn)槠矫?/span>ABCD⊥平面BCE,
平面ABCD∩平面BCE=BC,AB平面ABCD,
所以AB⊥平面BCE.
因?yàn)?/span>CE平面BCE,所以CE⊥AB.
因?yàn)?/span>CE⊥BE,AB平面ABE,BE平面ABE,AB∩BE=B,
所以CE⊥平面ABE.
因?yàn)?/span>CE平面AEC,所以平面AEC⊥平面ABE.
(2)解 連接BD交AC于點(diǎn)O,連接OF.
因?yàn)?/span>DE∥平面ACF,DE平面BDE,平面ACF∩平面BDE=OF,
所以DE∥OF.
又因?yàn)榫匦?/span>ABCD中,O為BD中點(diǎn),
所以F為BE中點(diǎn),即=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,橢圓的左,右焦點(diǎn)分別為F1,F2,點(diǎn)M為橢圓上的一個(gè)動(dòng)點(diǎn),△MF1F2面積的最大值為,過橢圓外一點(diǎn)(m,0)(m>a)且傾斜角為的直線l交橢圓于C,D兩點(diǎn).
(1)求橢圓的方程;
(2)若,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)().
(1)討論的單調(diào)性;
(2)證明:當(dāng)時(shí),.
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,,四邊形為平行四邊形,,為線段的中點(diǎn),點(diǎn)滿足.
(Ⅰ)求證:直線平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)及圓.
(1)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(2)若過點(diǎn)的直線與圓交于、兩點(diǎn),且,求以為直徑的圓的方程;
(3)若直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),().
(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)am的值;
(2)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論;
(3)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化建設(shè)步伐,建設(shè)特色社會(huì)主義新農(nóng)村,有n個(gè)新農(nóng)村集結(jié)區(qū),,,…,按照逆時(shí)針方向分布在凸多邊形頂點(diǎn)上(),如圖所示,任意兩個(gè)集結(jié)區(qū)之間建設(shè)一條新道路,兩條道路的交匯處安裝紅綠燈(集結(jié)區(qū),,,…,除外),在凸多邊形內(nèi)部任意三條道路都不共點(diǎn),記安裝紅綠燈的個(gè)數(shù)為.
(1)求,;
(2)求,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且曲線y=f(x)在其與y軸的交點(diǎn)處的切線記為l1,曲線y=g(x)在其與x軸的交點(diǎn)處的切線記為l2,且l1∥l2.
(1)求l1,l2之間的距離;
(2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)f(x)和g(x)的公共定義域中的任意實(shí)數(shù)x0,稱|f(x0)-g(x0)|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)f(x)和g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知p:函數(shù)f(x)在R上是增函數(shù),f(m2)<f(m+2)成立;q:方程1(m∈R)表示雙曲線.
(1)若p為真命題,求m的取值范圍;
(2)若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com