已知?jiǎng)訄AP過定點(diǎn)F(0,-),且與直線l相切,橢圓N的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是F,點(diǎn)A(1,)在橢圓N上.
(1)求動(dòng)圓圓心P的軌跡M的方程和橢圓N的方程;
(2)已知與軌跡M在x=-4處的切線平行的直線與橢圓N交于B、C兩點(diǎn),試探求使△ABC面積等于的直線l是否存在?若存在,請(qǐng)求出直線l的方程;若不存在,請(qǐng)說明理由.
解:(1)由題意知:點(diǎn)P到定點(diǎn)F(0,-)和直線y=的距離相等,故P的軌跡M是以F為焦點(diǎn),y=為準(zhǔn)線的拋物線.
∴=,∴p=2
∴軌跡M的方程為:x2=-4y
又由題意:可設(shè)橢圓方程為:+=1(a>b>0)
∴2a==4
∴a=2,又c=,∴b=,
∴橢圓N的方程為+=1.
(2)不存在滿足條件的直線l.
理由如下:若存在這樣的直線l,
∵軌跡M為拋物線x2=-4y,它在x=-4處的切線斜率為k=.
故可設(shè)l的方程為:y=x+m,
聯(lián)立消去y整理得,4x2+2mx+m2-4=0
∴Δ=(2m)2-16(m2-4)>0,∴m2<8且m≠0,
設(shè)B(x1,y1),C(x2,y2),則x1+x2=-m,x1x2=,
由兩點(diǎn)間的距離公式可求得|BC|=
又點(diǎn)A到l距離d=∴m4-8m2+18=0,顯然此方程無解,即m不存在,
故這樣的直線l不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知圓C的圓心是拋物線y=x2的焦點(diǎn).直線4x-3y-3=0與圓C相交于A,B兩點(diǎn),且|AB|=8,則圓C的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-).點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:=0;
(3)求△F1MF2面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)動(dòng)點(diǎn)P在直線x-1=0上,O為坐標(biāo)原點(diǎn),以OP為直角邊,點(diǎn)O為直角頂點(diǎn)作等腰直角三角形OPQ,則動(dòng)點(diǎn)Q的軌跡是( )
A.橢圓 B.兩條平行直線
C.拋物線 D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知真命題:若A為⊙O內(nèi)一定點(diǎn),B為⊙O上一動(dòng)點(diǎn),線段AB的垂直平分線交直線OB于點(diǎn)P,則點(diǎn)P的軌跡是以O,A為焦點(diǎn),OB長(zhǎng)為長(zhǎng)軸長(zhǎng)的橢圓.類比此命題,寫出另一個(gè)真命題:若A為⊙O外一定點(diǎn),B為⊙O上一動(dòng)點(diǎn),線段AB的垂直平分線交直線OB于點(diǎn)P,則點(diǎn)P的軌跡是__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)與雙曲線-=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a與m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y軸的距離的差等于1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和Sn=kcn-k(其中c,k為常數(shù)),且a2=4,a6=8a3.
(1)求an;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}滿足a1=2,an+1=2(1+)2an(n∈N*),則數(shù)列{an}的通項(xiàng)公式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com