如圖,在⊙O的直徑AB的延長線上任取一點C,過點C引直線與⊙O交于點D、E,在⊙O上再取一點F,使
AE
=
AF

(Ⅰ)求證:E、D、G、O四點共圓;
(Ⅱ)如果CB=OB,試求
CB
CG
的值.
考點:與圓有關的比例線段,圓內(nèi)接多邊形的性質與判定
專題:選作題,立體幾何
分析:(Ⅰ)證明∠EDF=∠AOE,利用∠COE與∠AOE互補,可得∠COE與∠EDF互補,從而可得E、D、G、O四點共圓;
(Ⅱ)利用四點共圓,結合割線定理,即可求
CB
CG
的值.
解答: (Ⅰ)證明:∵∠EDF的度數(shù)等于
EAF
的度數(shù)的一半,而
AE
=
AF

∴∠EDF的度數(shù)等于
AE
的度數(shù).
∵∠AOF的度數(shù)等于
AE
的度數(shù),
∴∠EDF=∠AOE,
∵∠COE與∠AOE互補,
∴∠COE與∠EDF互補,
∴E、D、G、O四點共圓;
(Ⅱ)解:由(Ⅰ)知E、D、G、O四點共圓,
∴CE•CD=CO•CG,
∵CE•CD=CA•CB,
∴CA•CB=CO•CG,
∵CB=OB,
CB
CG
=
CO
CA
=
2
3
點評:本題考查圓內(nèi)接多邊形的性質與判定,考查割線定理,確定四點共圓是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,拋物線y2=2px上一點到焦點F的距離與到y(tǒng)軸的距離的差為1.
(1)求拋物線的方程;
(2)過F作直線交拋物線于A,B兩點,且A,B關于x軸的對稱點分別為A′,B′,四邊形AA′BB′的面積為S,求
S
|AB|2
的最大值,并求出此時直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人計劃間種植n棵樹,已知每棵樹是否成活互不影響,成活率為p(0<p<1),設ξ表示他所種植的樹中成活的棵數(shù),ξ的數(shù)學期望為Eξ,方差為Dξ.
(1)若n=1,求Dξ的最大值;
(2)已知Eξ=3,標準差σξ=
3
2
,求n,p的值并寫出ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是邊長為2的菱形,∠BAD=60°.已知PB=PD=2,PA=
6

(Ⅰ)證明:BD⊥面PAC
(Ⅱ)若E為PA的中點,求三菱錐P-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x3-3(a+1)x2+6ax(a∈R).
(1)若函數(shù)f(x)在(-∞,+∞)上單調遞增,求實數(shù)a的取值集合;
(2)當x∈[1,3]時,f(x)的最小值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)用綜合法證明:a2+b2+c2≥ab+bc+ca,(a,b,c∈R);
(2)用反證法證明:若a,b,c均為實數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某電視臺有獎“闖關”競賽中,最后一關由4個問題構成.競賽規(guī)定:選手只能選這4個問題中的一個問題回答,回答正確可獲得獎金如表1,回答錯誤一律罰金1000元;經(jīng)調查分析,統(tǒng)計得出每位選手選擇問題的序號與回答的正確率如表2;
表1                                                        
問題序號  1 2 3 4
獎   金 3000 4000 8000 12000
問題序號  1 2 3 4
正確率 75% 60% 30%  20%
表2
如果把以上表中統(tǒng)計的各種答題情況正確率作為所有選手相應答題正確的概率.
(Ⅰ)記選手選擇第i題(i=1,2,3,4)作答獲得的獎金為ξ元,求選手選擇第i題(i=1,2,3,4)作答獲得的獎金ξ的數(shù)學期望;并以此為依據(jù)判斷選手選擇哪個問題回答獲得獎金期望最多?
(Ⅱ)現(xiàn)有兩位選手同時闖最后一關,競賽規(guī)定:若他們都選序號(4)的問題,可以合作討論、共同回答,但所獲得的獎金只有一份,兩人必須平均分配.假設合作討論后他們回答該問題的正確率,比獨立回答時至少有一人回答正確的正確率提高了100%.請你給這兩位選手參謀:是否應該采用合作的方式來回答問題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F(1,0),離心率e=
2
2
,A,B是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線OA與OB的斜率乘積kOA•kOB=-
1
2
,動點P滿足
OP
=
OA
OB
,(其中實數(shù)λ為常數(shù)).問是否存在兩個定點F1,F(xiàn)2,使得|PF1|+|PF2|=4?若存在,求F1,F(xiàn)2的坐標及γ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
x2+6x+14
x+1
(x>-1)的最小值.

查看答案和解析>>

同步練習冊答案